2.設(shè)f(x)是定義域R上的函數(shù),且f(0)=1,對(duì)任意x,y∈R,恒有f(x-y)=f(x)-y(2x-y+1),求f(x).

分析 根據(jù)抽象函數(shù)關(guān)系,令y=x進(jìn)行求解即可.

解答 解:∵f(0)=1,對(duì)任意x,y∈R,恒有f(x-y)=f(x)-y(2x-y+1),
∴令y=x,得f(x-x)=f(x)-x(2x-x+1),
即f(0)=f(x)-x(x+1)=1,
則f(x)=x(x+1)+1=x2+x+1.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,利用抽象函數(shù)關(guān)系,令y=x進(jìn)行求解是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.根據(jù)教材P45第6題可以證明函數(shù)g(x)=x2+ax+b滿足性質(zhì)$g(\frac{{{x_1}+{x_2}}}{2})≤\frac{{g({x_1})+g({x_2})}}{2}$,理解其中的含義.對(duì)于函數(shù)f(x)=2x,h(x)=log2x及任意實(shí)數(shù)x1,x2,仿照上述理解,可以推測(cè)( 。
A.$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$
B.$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≥\frac{{h({x_1})+h({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≥\frac{{h({x_1})+h({x_2})}}{2}$
D.$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)n∈N*,求證:$\frac{1}{9}$+$\frac{1}{25}$+…+$\frac{1}{(2n+1)^{2}}$<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸,焦點(diǎn)在直線3x-4y-12=0上,那么拋物線通徑長(zhǎng)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F且傾斜角為120°的直線l與拋物線在第一、四象限分別交于A、B兩點(diǎn),則$\frac{|AF|}{|BF|}$的值等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,M是拋物線y2=4x上一點(diǎn)(M在x軸上方),F(xiàn)是拋物線的焦點(diǎn),若|FM|=4,則∠x(chóng)FM=( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若a=50.2,b=logπ3,c=log5sin$\frac{{\sqrt{3}}}{2}$π,則(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在用數(shù)學(xué)歸納法求證:1+2+3+…+2n=$\frac{2n(1+2n)}{2}$(n∈N*)的過(guò)程中,則當(dāng)n=k+1時(shí),左端應(yīng)在n=k時(shí)的左端上加上4k+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知關(guān)于x的方程x3-ax2-x+1=0有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍為(-∞,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案