10.學(xué)校先舉辦了一次田徑運(yùn)動會,某班有8名同學(xué)參賽,又舉辦了一次球類運(yùn)動會,該班有12名同學(xué)參賽,兩次運(yùn)動會都參賽的有3人.兩次運(yùn)動會中,這個班共有17名同學(xué)參賽.

分析 設(shè)A為田徑運(yùn)動會參賽的學(xué)生的集合,B為球類運(yùn)動會參賽的學(xué)生的集合,那么A∩B就是兩次運(yùn)動會都參賽的學(xué)生的集合,card(A),card(B),card(A∩B)是已知的,于是可以根據(jù)上面的公式求出card(A∪B).

解答 解:設(shè)A={x|x是參加田徑運(yùn)動會比賽的學(xué)生},B={x|x是參加球類運(yùn)動會比賽的學(xué)生},
A∩B={x|x是兩次運(yùn)動會都參加比賽的學(xué)生},
A∪B={x|x是參加所有比賽的學(xué)生}.
因此card(A∪B)=card(A)+card(B)-card(A∩B)=8+12-3=17.
故兩次運(yùn)動會中,這個班共有17名同學(xué)參賽.
故答案為:17.

點評 本題考查集合中元素個數(shù)的求法,是中檔題,解題時要認(rèn)真審題,注意公式card(A∪B)=card(A)+card(B)-card(A∩B)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.記max{m,n}=$\left\{\begin{array}{l}{m,m≥n}\\{n,m<n}\end{array}\right.$,設(shè)F(x,y)=max{|x2+2y+2|,|y2-2x+2|},其中x,y∈R,則F(x,y)的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z=(a2+2a-3)+(a-3)i為純虛數(shù)(i為虛數(shù)單位),則a=( 。
A.-3B.-3或1C.3或-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x}(x≤0)}\\{{x^2}(x>0)}\end{array}}$,那么f[f(-1)]的值為( 。
A.$\frac{1}{4}$B.4C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.非零向量$\overrightarrow a$,$\overrightarrow b$,滿足|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|=2|$\overrightarrow a$|,則向量$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$夾角的余弦值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知首項為$\frac{3}{2}$的等比數(shù)列{an}的前n項和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn=Sn+$\frac{1}{S_n}$(n∈N*),求數(shù)列{Tn}的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.由直線y=x-4,曲線y=$\sqrt{2x}$以及x軸所圍成的圖形面積為(  )
A.$\frac{25}{2}$B.13C.$\frac{40}{3}$D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點A($\frac{{\sqrt{2}}}{2}$,-$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1,F(xiàn)2分別為左右、焦點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若y2=4x上存在兩個點M,N,橢圓上有兩個點P,Q滿足M,N,F(xiàn)2三點共線,P,Q,F(xiàn)2三點共線,且PQ⊥MN,求四邊形PQMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列四個函數(shù)中,在區(qū)間[0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.f(x)=-x+3B.$f(x)=-\frac{1}{x}$C.f(x)=|x-1|D.f(x)=(x+1)2

查看答案和解析>>

同步練習(xí)冊答案