10.已知|$\overrightarrow{a}$|=2,$\overrightarrow{a}$•$\overrightarrow$=1,$\overrightarrow{a}$,$\overrightarrow$的夾角θ為60°,則|$\overrightarrow$|為1.

分析 根據(jù)平面向量的數(shù)量積公式列出方程解出|$\overrightarrow$|.

解答 解:∵$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos60°=1,即2×|$\overrightarrow$|×$\frac{1}{2}$=1,
解得|$\overrightarrow$|=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.向一等邊三角形內(nèi)隨機(jī)撒1000個(gè)點(diǎn),則落在該等邊三角形內(nèi)切圓的點(diǎn)約有( 。
A.850個(gè)B.605個(gè)C.415個(gè)D.295個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.對(duì)于二次函數(shù)y=2x2-3x+1,求函數(shù)在[0,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.袋子中放有大小、性質(zhì)完全相同的4個(gè)白球和5個(gè)黑球,如果不放回地依次摸出2個(gè)球,則在第一次摸到白球的條件下,第二次摸到黑球的概率為( 。
A.$\frac{5}{8}$B.$\frac{5}{18}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校高二八班選出甲、乙、丙三名同學(xué)參加級(jí)部組織的科學(xué)知識(shí)競(jìng)賽.在該次競(jìng)賽中只設(shè)成績(jī)優(yōu)秀和成績(jī)良好兩個(gè)等次,若某同學(xué)成績(jī)優(yōu)秀,則給予班級(jí)10分的班級(jí)積分,若成績(jī)良好,則給予班級(jí)5分的班級(jí)積分.假設(shè)甲、乙、丙成績(jī)?yōu)閮?yōu)秀的概率分別為$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,他們的競(jìng)賽成績(jī)相互獨(dú)立.
(1)求在該次競(jìng)賽中甲、乙、丙三名同學(xué)中至少有一名成績(jī)?yōu)閮?yōu)秀的概率;
(2)記在該次競(jìng)賽中甲、乙、丙三名同學(xué)所得的班級(jí)積分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+$\sqrt{3}$csinB.
(1)求B;
(2)若b=2,a=$\sqrt{3}$c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,D是BC的中點(diǎn).
(1)若E為B1C1的中點(diǎn),求證:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求證:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知拋物線C的頂點(diǎn)是原點(diǎn)O,焦點(diǎn)F在x軸的正半軸上,經(jīng)過(guò)F的直線與拋物線C交于A,B兩點(diǎn),如果$\overrightarrow{OA}$•$\overrightarrow{OB}$=-12,那么拋物線C的方程為(  )
A.x2=8yB.x2=4yC.y2=8xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直三棱柱ABC-A1B1C1的各頂點(diǎn)都在同一球面上,若AB=AC=AA1=2,∠BAC=60°,則此球的表面積等于$\frac{28}{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案