5.已知圓C:(x+2)2+y2=1,若橢圓M以圓心C及(2,0)為左、右焦點,且圓C與橢圓M沒有公共點,則橢圓M的離心率的取值范圍是$(0,\frac{2}{3})$.

分析 由圓C:(x+2)2+y2=1,可得圓心:C(-2,0).由橢圓M以圓心C及(2,0)為左、右焦點,且圓C與橢圓M沒有公共點,可得c=2,a-c>1,即可得出.

解答 解:由圓C:(x+2)2+y2=1,可得圓心:C(-2,0).
由橢圓M以圓心C及(2,0)為左、右焦點,且圓C與橢圓M沒有公共點,
∴c=2,a-c>1,
∴a>3.
∴e=$\frac{c}{a}$$<\frac{2}{3}$,又e>0.
則橢圓M的離心率的取值范圍是$0<e<\frac{2}{3}$.
故答案為:$(0,\frac{2}{3})$.

點評 本題考查了橢圓的標準方程及其性質、圓的方程及其性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.($\frac{i-1}{i+1}$)2016的共軛復數(shù)為( 。
A.-1B.1C.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|≠0,$\overrightarrow{a}$+$\overrightarrow$=$\sqrt{3}$$\overrightarrow{c}$,則向量$\overrightarrow{a}$與向量$\overrightarrow{c}$的夾角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某旅行社租用A,B兩種型號的客車安排900名客人旅行,A,B兩種車輛的載客量分別為36人和60人,租金分別為1600元/輛和2400元/輛,旅行社要求租車總數(shù)不超過21輛,且B型車不多于A型車7輛.則租金最少為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)a,直線l1:ax+y+1=0,l2:2x+(a+1)y+3=0,則“a=1”是“l(fā)1∥l2”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖是甲、乙兩名籃球運動員某賽季一些場次得分的莖葉圖,莖表示得分的十位數(shù),據(jù)圖可知甲運動員得分的中位數(shù)和乙運動員得分的眾數(shù)之和為64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.我國古代秦九韶算法可計算多項式anxn+an-1xn-1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當x=1時,當多項式為x4+4x3+6x2+4x+1的值為( 。
A.5B.16C.15D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.(1+$\frac{2}{{x}^{2}}$)($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)6的展開式中的常數(shù)項是( 。
A.12B.20C.26D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點F的直線與雙曲線相交于A,B兩點,當AB⊥x軸,稱|AB|為雙曲線的通徑.若過焦點F的所有焦點弦AB中,其長度的最小值為$\frac{2^{2}}{a}$,則此雙曲線的離心率的范圍為(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$]C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

同步練習冊答案