20.已知實(shí)數(shù)a,直線l1:ax+y+1=0,l2:2x+(a+1)y+3=0,則“a=1”是“l(fā)1∥l2”的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 對(duì)直線斜率及其a分類討論,利用平行直線的充要條件即可判斷出結(jié)論.

解答 解:直線l1:ax+y+1=0,l2:2x+(a+1)y+3=0,
a=-1時(shí),上述兩條直線不平行,舍去.
a≠-1時(shí),兩條直線方程分別化為:y=-ax-1,y=-$\frac{2}{a+1}$x-$\frac{3}{a+1}$.
由l1∥l2?-a=$-\frac{2}{a+1}$,-1$≠-\frac{3}{a+1}$,解得:a=1或-2.
∴“a=1”是“l(fā)1∥l2”的充分不必要條件,
故選:B.

點(diǎn)評(píng) 本題考查了平行直線的充要條件,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若復(fù)數(shù)z=$\frac{i}{1+i}$+$\frac{2}{i}$(i為虛數(shù)單位),則|z|=( 。
A.$\frac{\sqrt{10}}{2}$B.2C.$\frac{3}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)長(zhǎng)軸為4,離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)P作橢圓的切線l交y軸于點(diǎn)A,直線l′過(guò)點(diǎn)P且垂直于l交y軸于B,試判斷以AB為直徑的圓能否經(jīng)過(guò)定點(diǎn),若能求出定點(diǎn)坐標(biāo),若不能說(shuō)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},則M∪N等于(  )
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知總體的各個(gè)個(gè)體的值由小到大依次為1,3,4,8,a,c,11,23,53,86,且總體的中位數(shù)為10,則 cos $\frac{a+c}{3}$ π 的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知圓C:(x+2)2+y2=1,若橢圓M以圓心C及(2,0)為左、右焦點(diǎn),且圓C與橢圓M沒(méi)有公共點(diǎn),則橢圓M的離心率的取值范圍是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:?m∈R,sinm=$\frac{1}{3}$,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題,則數(shù)m的取值范圍是( 。
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),P是橢圓上任一點(diǎn),過(guò)一焦點(diǎn)引∠F1PF2的外角平分線的垂線,垂足為A.若|OA|=2b,則該橢圓的離心率e為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知等差數(shù)列{an},設(shè)其前n項(xiàng)和為Sn,滿足S5=20,S8=-4.
(1)求an與Sn
(2)設(shè)cn=anan+1an+2,Tn是數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案