分析 (1)連結(jié)AB1,由四邊形ABB1A1為正方形可得AB1⊥A1B,根據(jù)面面垂直的性質(zhì)得出AB1⊥平面A1BC,故而AB1⊥BC,結(jié)合BC⊥BB1得出BC⊥平面ABB1A1,故而V${\;}_{{A}_{1}-MNC}$=VB-MNC=VM-BCN=V${\;}_{{B}_{1}-BCN}$=V${\;}_{C-{B}_{1}BM}$=$\frac{1}{3}{S}_{△B{B}_{1}M}$•BC;
(2)由BC⊥平面ABB1A1可得BC⊥AB;
(3)(文)連結(jié)CM,則∠ACM為AC與平面A1BC所成角;
(理)以B為原點(diǎn)建立坐標(biāo)系,求出兩平面的法向量,則法向量的夾角(或補(bǔ)交)即為二面角的大。
解答 解:(1)連結(jié)AB1,∵直棱柱ABC-A1B1C1,AB=AA1=BC,
∴四邊形ABB1A1,BB1C1C是正方形,
∴AB1⊥A1B,BC⊥BB1,
又平面A1BC⊥平面A1ABB1,平面A1BC∩平面A1ABB1=A1B,
∴AB1⊥平面A1BC,又BC?平面BB1C1C,
∴AB1⊥BC,又BB1?平面ABB1A1,AB1?平面ABB1A1,BB1∩AB1=B1,
∴BC⊥平面ABB1A1,
∵M(jìn)為A1B的中點(diǎn),
∴V${\;}_{{A}_{1}-MNC}$=VB-MNC=VM-BCN=V${\;}_{{B}_{1}-BCN}$=V${\;}_{C-{B}_{1}BM}$=$\frac{1}{3}{S}_{△B{B}_{1}M}$•BC=$\frac{1}{3}×\frac{1}{4}×{2}^{2}×2$=$\frac{2}{3}$.
(2)由(1)得BC⊥平面ABB1A1,又AB?平面ABB1A1,
∴BC⊥AB.
(3)(文科)連結(jié)CM.
由(1)可得AB1⊥平面A1BC,
∴∠ACM為AC與平面A1BC所成角.
∵AB=BC=AA1=2,
∴AM=$\frac{1}{2}A{B}_{1}$=$\sqrt{2}$,AC=2$\sqrt{2}$,
∴sin∠ACM=$\frac{AO}{AC}=\frac{1}{2}$,
∴∠ACM=30°,即AC與平面A1BC所成角為30°.
(理科)以B為原點(diǎn),以BC,BB1,BA為坐標(biāo)軸建立空間直角坐標(biāo)系B-xyz,
則B(0,0,0),A(0,0,2),C(2,0,0),A1(0,2,2),B1(0,2,0).
∴$\overrightarrow{{A}_{1}C}$=(2,-2,-2),$\overrightarrow{AC}$=(2,0,-2),$\overrightarrow{A{B}_{1}}$=(0,2,-2),
∵AB1⊥平面A1BC,∴$\overrightarrow{A{B}_{1}}$=(0,2,-2)是平面A1BC的一個(gè)法向量,
設(shè)平面A1AC的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2x-2y-2z=0}\\{2x-2z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(1,0,1),
∴cos<$\overrightarrow{n}$,$\overrightarrow{A{B}_{1}}$>=$\frac{\overrightarrow{n}•\overrightarrow{A{B}_{1}}}{|\overrightarrow{n}||\overrightarrow{A{B}_{1}}|}$=$\frac{-2}{2\sqrt{2}•\sqrt{2}}$=-$\frac{1}{2}$.
∴<$\overrightarrow{n}$,$\overrightarrow{A{B}_{1}}$>=120°,
∵銳二面角A-A1C-B的大小為60°.
點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),面面垂直的性質(zhì),空間角的計(jì)算及棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (0,1)∪(1,+∞) | D. | (-∞,0)∪{1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{225}$ | B. | $\frac{1}{300}$ | C. | $\frac{1}{450}$ | D. | 以上全不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | ($\frac{4}{3}$,3) | C. | ($\frac{2}{3}$,3) | D. | (-1,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com