分析 M在橢圓$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}$=1上,可設M(6cosα,3$\sqrt{3}$sinα)(0≤α<2π),可得$\overrightarrow{KM}$•$\overrightarrow{NM}$=$\overrightarrow{KM}$•$(\overrightarrow{KM}-\overrightarrow{KN})$=${\overrightarrow{KM}}^{2}$-$\overrightarrow{KM}•\overrightarrow{KN}$=(6cosα-3)2+(3$\sqrt{3}$sinα)2
=9(cosα-2)2,利用三角函數(shù)的單調性值域與二次函數(shù)的單調性即可得出.
解答 解:M在橢圓$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}$=1上,可設M(6cosα,3$\sqrt{3}$sinα)(0≤α<2π),
則$\overrightarrow{KM}$•$\overrightarrow{NM}$=$\overrightarrow{KM}$•$(\overrightarrow{KM}-\overrightarrow{KN})$=${\overrightarrow{KM}}^{2}$-$\overrightarrow{KM}•\overrightarrow{KN}$=${\overrightarrow{KM}}^{2}$=(6cosα-3)2+(3$\sqrt{3}$sinα)2
=36cos2α-36cosα+9+27sin2α=9cos2α-36cosα+36=9(cosα-2)2,
令cosα=t∈[-1,1],則f(t)=9(t-2)2-9∈[9,18].
∴當cosα=1,sinα=0時,即取M(6,0),$\overrightarrow{KM}$•$\overrightarrow{NM}$最小值為9.
故答案為:9.
點評 本題考查了橢圓的定義及其標準方程、向量數(shù)量積運算性質、三角函數(shù)的單調性值域與二次函數(shù)的單調性,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{3}{4}$π,$\frac{π}{4}$] | B. | [-π,0] | C. | [-$\frac{π}{4}$,$\frac{3}{4}$π] | D. | [-$\frac{π}{2}$,$\frac{π}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com