5.如圖,在正方體ABCD-A1B1C1D1,若點E為A1C1上的一動點,則直線CE一定垂直于(  )
A.ACB.BDC.A1DD.A1D1

分析 由線面垂直的判定能推導(dǎo)出BD⊥平面A1C1C,根據(jù)線面垂直的性質(zhì)從而可得BD⊥CE,從而得解.

解答 解:∵在正方體ABCD-A1B1C1D1中,ABCD是正方形,
∴BD⊥A1C1,且BD⊥CC1,又A1C1∩CC1=C1,
∴BD⊥平面A1C1C,
又∵CE?平面A1C1C,
∴BD⊥CE,
故選:B.

點評 本題主要考查了線面垂直的判定及性質(zhì),解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100]
(1)求頻率分布直方圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評分恰好有一人在[40,50)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(Ⅰ)求證:平面ACE⊥平面CDE;
(Ⅱ)求平面CED與平面BEC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是(  )
A.y=sin$\frac{x}{2}$B.y=2sinxC.y=sin4πD.y=sin(-4x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知定義在[-1,+∞]上的函數(shù)在區(qū)間[-1,3)上的解析式為f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,當(dāng)x≥3時,函數(shù)滿足f(x)=f(x-4)+1,若函數(shù)g(x)=f(x)-kx-k有6個零點,則實數(shù)k的取值或取值范圍為( 。
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,a≠1).
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)求使f(x)>$\frac{1}{2}$的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2lnx-ax.
(1)若曲線f(x)在點(1,f(1))處的切線過點(2,0),求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+3|x-a|+2(a∈R).
(1)當(dāng)a=0時,討論f(x)的單調(diào)性;
(2)當(dāng)a≤1時,求f(x)在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x,y,z∈R,且x+3y-2z=3,求x2+y2+z2的最小值.

查看答案和解析>>

同步練習(xí)冊答案