9.將函數(shù)f(x)=2sin($\frac{x}{3}$+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移3個(gè)單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A.g(x)=2sin($\frac{x}{3}$-$\frac{π}{4}$)-3B.g(x)=2sin($\frac{x}{3}$+$\frac{π}{4}$)+3C.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)+3D.g(x)=2sin($\frac{x}{3}$-$\frac{π}{12}$)-3

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)f(x)=2sin($\frac{x}{3}$+$\frac{π}{6}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,
再向上平移3個(gè)單位,得到函數(shù)g(x)的圖象,
則g(x)=2sin[$\frac{1}{3}$(x+$\frac{π}{4}$)+$\frac{π}{6}$]+3=2sin($\frac{x}{3}$+$\frac{π}{4}$)+3,
故選:B.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={-2,-1,0,1,2},B=[-2,1),則A∩B=( 。
A.{-2,-1,0}B.{-2,-1,0,1}C.(-2,1)D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|-2<x<3},B={x|x2-4≥0},則A∩B=( 。
A.[-2,1)B.(-1,2]C.[2,3)D.[-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+5),x>2}\\{a{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,若f(-2016)=e,則a=( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.新定義運(yùn)算:$|\begin{array}{l}{a}&\\{c}&oxbitaf\end{array}|$=ad-bc,則滿足$|\begin{array}{l}{i}&{z}\\{-1}&{z}\end{array}|$=-2的復(fù)數(shù)z的虛部是(  )
A.-1+iB.iC.1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題正確的是( 。
A.若p∧q為假命題,則p、q均為假命題
B.函數(shù)f(x)=x2-x-6的零點(diǎn)是(3,0)或(-2,0)
C.對于命題p:?x∈R,使得x2-x-6>0,則¬p:?x∈R,均有x2-x-6≤0
D.命題“若x2-x-6=0,則x=3”的否命題為“若x2-x-6=0,則x≠3”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an},Sn表示前n項(xiàng)和,a3=2S2+1,a4=2S3+1,則a1=1,公比q3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線xcos140°+ysin40°=0的傾斜角是(  )
A.40°B.50°C.130°D.140°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一個(gè)幾何體的三視圖如圖所示(單位:m),其正視圖、側(cè)視圖均有一個(gè)角為60°的菱形,俯視圖為邊長為1的正方形,則該幾何體的體積為$\frac{\sqrt{3}}{3}$m3

查看答案和解析>>

同步練習(xí)冊答案