分析 (1)由AB∥CD得出結(jié)論;
(2)通過證明BD⊥平面PAC得出BD⊥PC;
(3)利用勾股定理計(jì)算OC,得出△BCD的面積,代入棱錐的體積公式計(jì)算即可.
解答 證明:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
又AB?平面PCD,CD?平面PCD,
∴AB∥平面PCD.
(2)連接AC,
∵四邊形ABCD是菱形,
∴AC⊥BD.
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BD⊥平面PAC,又PC?平面PAC,
∴BD⊥PC.
(3)設(shè)AC,BD的交點(diǎn)為O,則OB=$\frac{1}{2}$BD=$\frac{\sqrt{6}}{2}$,∵BC=AB=$\sqrt{2}$,
∴OC=$\sqrt{B{C}^{2}-O{B}^{2}}$=$\frac{\sqrt{2}}{2}$.
∴S△BCD=$\frac{1}{2}BD•OC$=$\frac{\sqrt{3}}{2}$.
∴VC-PBD=VP-BCD=$\frac{1}{3}{S}_{△BCD}•PA$=$\frac{1}{3}×\frac{\sqrt{3}}{2}×1$=$\frac{\sqrt{3}}{6}$.
點(diǎn)評(píng) 本題考查了線面平行的判定,線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
(0,20] | 8 | 0.08 |
(20,40] | 8 | 0.08 |
(40,60] | 30 | 0.30 |
(60,80] | a | B |
(80,100] | 22 | 0.22 |
總計(jì) | M | N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com