8.已知函數(shù)f(x)=ln(x2+1)的值域為{0,1,2},則滿足這樣條件的函數(shù)的個數(shù)9個.

分析 由題意:ln(x2+1)等于0,1,2求出對應(yīng)的對數(shù)方程分別得到x的值,然后利用列舉法得到值域為{0,1,2}的所有定義域的情況,則滿足條件的函數(shù)個數(shù)即可求.

解答 解:函數(shù)f(x)=ln(x2+1)的值域為{0,1,2},
令ln(x2+1)=0,可得x2+1=1,x=0.
令ln(x2+1)=1,可得x2+1=e,x=±$\sqrt{e-1}$
令ln(x2+1)=2,可得x2+1=e2,x=±$\sqrt{{e}^{2}-2}$
則滿足值域為{0,1,2}的定義域有9個,故而函數(shù)有9個.

點評 本題考查了函數(shù)的定義域與值域的關(guān)系以及對數(shù)的運算性質(zhì),考查了函數(shù)圖象自變量與因變量的對于關(guān)系.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等差數(shù)列{an}中,a7+a9=16,S11=66,則a12的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α為銳角,若sin2α+cos2α=-$\frac{1}{5}$,則tanα=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U={1,2,3,4,5},A∩B={1,2},(∁UA)∩B={3},A∩(∁UB)={5},則A∪B是(  )
A.{1,2,3}B.{1,2,5}C.{1,2,3,4}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列所給關(guān)系正確的個數(shù)是2.
①π∈R;②$\sqrt{3}$∉Q;③0∈N*;④|-4|∉N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知二次函數(shù)滿足f(3x+1)=9x2+6x+5,求f(x)的解析式.
(2)設(shè)f(x)是定義在實數(shù)集R上的函數(shù),滿足f(0)=1,且對于任意的實數(shù)a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(-∞,0),當(dāng)x1<x2時,都有f(x1)<f(x2)”的是( 。
A.f(x)=4-2xB.f(x)=$\frac{1}{x-2}$C.f(x)=x2-2x-2D.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足sinA+sinB=[cosA-cos(π-B)]sinC.
(1)判斷△ABC是否為直角三角形,并說明理由;
(2)若a+b+c=1+$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px過點A(1,2),則p=2,準(zhǔn)線方程是x=-1.

查看答案和解析>>

同步練習(xí)冊答案