A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 寫出①的等價命題判斷①正確;由題意求出f(x)>0的解集說明②錯誤;由f(x)是奇函數(shù),在定義域(-2,2)上單調(diào)遞增,把不等式f(2+x)+f(1-2x)>0轉(zhuǎn)化為不等式組$\left\{\begin{array}{l}{-2<2+x<2}\\{-2<2x-1<2}\\{2+x>2x-1}\end{array}\right.$求解,說明③錯誤.
解答 解:①,若對于任意x1,x2∈R,且x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則x2-x1與f(x2)-f(x1)同號,說明f(x)為R上的增函數(shù),故①正確;
②,若f(x)為R上的偶數(shù),且在(-∞,0]上是減函數(shù),f(-1)=0,則f(x)>0的解集為(-∞,-1)∪(1,+∞),故②錯誤;
③,若f(x)是奇函數(shù),在定義域(-2,2)上單調(diào)遞增,則不等式f(2+x)+f(1-2x)>0等價于f(2+x)>f(2x-1),
∴$\left\{\begin{array}{l}{-2<2+x<2}\\{-2<2x-1<2}\\{2+x>2x-1}\end{array}\right.$,解得-$\frac{1}{2}<x<0$,則不等式f(2+x)+f(1-2x)>0的解集為(-$\frac{1}{2}$,0),故③錯誤.
∴正確的結(jié)論是1個.
故選:B.
點評 本題考查命題的真假判斷與應(yīng)用,考查了函數(shù)的奇偶性、單調(diào)性的性質(zhì),訓(xùn)練了利用函數(shù)的單調(diào)性求解不等式,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-15,1] | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{{\sqrt{2}}}{2}x+2$ | B. | $y=-\frac{{\sqrt{2}}}{2}x+2$或$y=\frac{{\sqrt{2}}}{2}x+2$ | ||
C. | $y=\sqrt{2}x+2$ | D. | $y=\sqrt{2}x+2$或$y=-\sqrt{2}x+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∨q | B. | p∧q | C. | ¬p∧q | D. | p∨¬q |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com