分析 (1)2bcosC=2a-c,由正弦定理可得:2sinBcosC=2sinA-sinC,又sinA=sin(B+C),化為:2cosBsinC=sinC,可得cosB=$\frac{1}{2}$,即可得出B.
(2)由余弦定理可得:b2=a2+c2-2accosB,再利用基本不等式的性質(zhì)、三角形三邊大小關(guān)系即可得出.
解答 解:(1)∵2bcosC=2a-c,由正弦定理可得:2sinBcosC=2sinA-sinC,又sinA=sin(B+C),
∴2sinBcosC=2sinBcosC+2cosBsinC-sinC,
化為:2cosBsinC=sinC,
∵C∈(0,π),∴2cosB=1,即cosB=$\frac{1}{2}$.
又B∈(0,π),∴B=$\frac{π}{3}$.
(2)由余弦定理可得:b2=a2+c2-2accosB,
∴1=(a+c)2-3ac≥(a+c)2-3×$(\frac{a+c}{2})^{2}$,
化為:(a+c)2≤4,解得a+c≤2,當且僅當a=c=1時取等號.
又a+c>b=1.
∴1<a+c≤2.
∴a+c的最大值是2.
點評 本題考查了正弦定理的應(yīng)用、解三角形、和差公式、三角形內(nèi)角和定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S1,S2,S3 | B. | S1,S2,S4 | C. | S1,S3,S4 | D. | S2,S3,S4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{16}{3}$ | C. | $\frac{22}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com