8.如圖,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,則AB的長為( 。
A.3B.4C.4.5D.5

分析 由題中條件:“DE∥BC,EF∥CD”易得成比例線段,再結(jié)合題中已知線段的長度,即可求得AB的長.

解答 解:由DE∥BC,EF∥CD得到:$\frac{AE}{AC}$=$\frac{DE}{BC}$=$\frac{2}{3}$,
所以$\frac{AE}{EC}$=2=$\frac{AF}{FD}$,
則AF=2,
所以AD=AF+DF=3,
由DE∥BC得到:$\frac{AD}{AE}$=$\frac{DE}{BC}$,即$\frac{3}{AB}$=$\frac{2}{3}$,
所以AB=4.5.
故選:C.

點評 此題主要考查的是平行線分線段成比例,正確的判斷出對應(yīng)邊解答此題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,角A、B、C所對的邊分別為a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)是定義在R上的奇函數(shù),且f(2)=0,當x>0時,f'(x)>0(其中f'(x)為f(x)的導(dǎo)函數(shù)),則f(x)>0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線$\sqrt{3}$x-ysinθ+2=0的傾斜角的取值范圍是[$\frac{π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖1所示,直角梯形ABCD中,∠BCD=90°,AD∥BC,AD=8,BC=CD=4,過B作BE⊥AD于E,P是線段DE上的一個動點,將△ABE沿BE向上折起,使AC=4$\sqrt{3}$,連結(jié)PA、PC、AC(如圖2).
(Ⅰ)若點P、Q分別為DE和AC的中點,求證:PQ∥平面ABE;
(Ⅱ)若平面AEB和平面APC所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$,求PE的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,PA⊥面ABCD,點Q在棱PA上,且PA=4PQ=4,AB=2,CD=1,AD=$\sqrt{2}$,∠CDA=∠BAD=$\frac{π}{2}$,M,N分別是PD,PB的中點.
(1)求證:MQ∥面PCB;
(2)求截面MCN與底面ABCD所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=|x-1|+|2x-1|+|3x-1|.則f(2)=9,f(x)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.“函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)”是“l(fā)oga2<0”的充要條件(填“充分不必要”“必要不充分”“充要不充分”“充要”“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=sin(x+$\frac{5π}{2}$)cos(x-$\frac{π}{2}$)-cos2(x+$\frac{π}{4}}$).
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f($\frac{A}{2}}$)=$\frac{{\sqrt{3}-1}}{2}$,a=1,求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案