17.已知f(x)=ax4+bx2+c的圖象經(jīng)過點(0,1),且在x=1處的切線方程是y=x-2,則y=f(x)的解析式為f(x)=$\frac{5}{2}{x}^{4}-\frac{9}{2}{x}^{2}+1$.

分析 由f(x)=ax4+bx2+c的圖象經(jīng)過點(0,1)求得c=1,再由在x=1處的切線方程是y=x-2,得到f′(1)=1且f(1)=-1,聯(lián)立求出a,b的值得答案.

解答 解:∵f(x)=ax4+bx2+c的圖象經(jīng)過點(0,1),
∴f(0)=c=1,
則f(x)=ax4+bx2+1,
f′(x)=4ax3+2bx,
又在x=1處的切線方程是y=x-2,
∴f′(1)=4a+2b=1,且f(1)=a+b+1=-1,解得$a=\frac{5}{2},b=-\frac{9}{2}$.
∴y=f(x)的解析式為f(x)=$\frac{5}{2}{x}^{4}-\frac{9}{2}{x}^{2}+1$.
故答案為:f(x)=$\frac{5}{2}{x}^{4}-\frac{9}{2}{x}^{2}+1$.

點評 本題考查利用導數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足f(x)•f(x+2)=2,若f(3)=2,則f(2017)=(  )
A.2B.-2C.4D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)為定義在[-1,1]上的奇函數(shù),當x∈[-1,0]時,函數(shù)解析式為$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$.
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}是遞增的等比數(shù)例,a1+a4=9,a2a3=8,Sn為數(shù)列{an}的前n項和,則S4=(  )
A.15B.16C.18D.31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若雙曲線的一個焦點為(0,-13)且離心率為$\frac{13}{5}$,其標準方程為$\frac{y^2}{25}-\frac{x^2}{144}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓和雙曲線有相同的焦點F(5,0)和F(-5,0),其離心率e滿足方程 6e2-17e+5=0,求橢圓和雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.(1)計算0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
(2)化簡$\frac{{{a^{\frac{2}{3}}}\sqrt}}{{{a^{-\frac{1}{2}}}\root{3}}}÷{(\frac{{{a^{-1}}\sqrt{{b^{-1}}}}}{{b\sqrt{a}}})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.小華同學制作了一個簡易的網(wǎng)球發(fā)射器,可用于幫忙練習定點接發(fā)球,如圖1所示,網(wǎng)球場前半?yún)^(qū)、后半?yún)^(qū)總長為23.77米,球網(wǎng)的中間部分高度為0.914米,發(fā)射器固定安裝在后半?yún)^(qū)離球網(wǎng)底部8米處中軸線上,發(fā)射方向與球網(wǎng)底部所在直線垂直.為計算方便,球場長度和球網(wǎng)中間高度分別按24米和1米計算,發(fā)射器和網(wǎng)球大小均忽略不計.如圖2所示,以發(fā)射器所在位置為坐標原點建立平面直角坐標系xOy,x軸在地平面上的球場中軸線上,y軸垂直于地平面,單位長度為1米.已知若不考慮球網(wǎng)的影響,網(wǎng)球發(fā)射后的軌跡在方程=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).發(fā)射器的射程是指網(wǎng)球落地點的橫坐標.

(1)求發(fā)射器的最大射程;
(2)請計算k在什么范圍內(nèi),發(fā)射器能將球發(fā)過網(wǎng)(即網(wǎng)球飛行到球網(wǎng)正上空時,網(wǎng)球離地距離大于1米)?若發(fā)射器將網(wǎng)球發(fā)過球網(wǎng)后,在網(wǎng)球著地前,小明要想在前半?yún)^(qū)中軸線的正上空選擇一個離地面2.55米處的擊球點正好擊中網(wǎng)球,試問擊球點的橫坐標a最大為多少?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)y=(x-3)|x|
(1)用分段函數(shù)的形式表示該函數(shù)
(2)畫出該函數(shù)的圖象
(3)寫出該函數(shù)的值域.

查看答案和解析>>

同步練習冊答案