直線y=3-x與坐標(biāo)軸所圍圖形的面積為
 
考點(diǎn):定積分在求面積中的應(yīng)用
專題:計(jì)算題
分析:首先分別確定直線與x軸,y軸交點(diǎn)坐標(biāo),然后即可求出故直線y=-x+3與坐標(biāo)軸圍成三角形面積.
解答: 解:令x=0,得y=3,令y=0,得x=3,
則直線y=3-x與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為(0,3),(3,0),
故直線y=3-x與坐標(biāo)軸圍成三角形面積為
1
2
×3×3=
9
2

故答案為:
9
2
點(diǎn)評:本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.求出直線與坐標(biāo)軸的交點(diǎn),把求線段的長的問題轉(zhuǎn)化為求函數(shù)的交點(diǎn)的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R+,求證:a+b≤
2
a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3ax+3a在區(qū)間(0,2)內(nèi)有極小值,則a的取值范圍是( 。
A、a>0B、a>2
C、0<a<2D、0<a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時氣球的高是60m,則河流的寬度BC等于( 。
A、30(
3
+1)
m
B、120(
3
-1)
m
C、180(
2
-1)
m
D、240(
3
-1)
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,點(diǎn)(a,b)在直線2xcosB-ycosC=ccosB上.
(1)求cosB的值;
(2)若a=
2
3
3
,b=2,求角A的大小及向量
BC
BA
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線n的極坐標(biāo)是pcos(θ+
π
4
)=4
2
,圓A的參數(shù)方程是
x=1+
2
cosθ
y=-1+
2
sinθ
(θ是參數(shù))
(1)將直線n的極坐標(biāo)方程化為普通方程;
(2)求圓A上的點(diǎn)到直線n上點(diǎn)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)為y=(sinx)4-(cosx)4,則導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α∥平面β,直線a?α,點(diǎn)B∈β,則下列三個命題中為真命題的個數(shù)為(  )
①在β內(nèi)過點(diǎn)B的所有直線中存在唯一一條與a垂直的直線
②過直線a存在唯一一條與β垂直的平面
③在β內(nèi)過點(diǎn)B的所有直線中存在唯一一條與a平行的直線.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

安徽省第13屆運(yùn)動會在安慶舉行,為了更好地做好服務(wù)工作,需對所有的志愿者進(jìn)行賽前培訓(xùn),培訓(xùn)結(jié)束后,所有志愿者參加了“綜合素質(zhì)”和“服務(wù)技能”兩個科目的考試,成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中“綜合素質(zhì)”科目的成績?yōu)锽的考生有10人.
(1)求該考場考生中“綜合素質(zhì)”科目中成績?yōu)锳的人數(shù);
(2)若等級A,B,C,D,E分別對應(yīng)90分,80分,70分,60分,50分,若該場考生的平均成績不低于60分則認(rèn)為培訓(xùn)合格,問該場考試綜合素質(zhì)培訓(xùn)是否合格,并說明理由.
(3)已知參加本考場測試的考生中,恰有兩人的兩科成績均為A.在至少一科成績?yōu)锳的考生中,隨機(jī)抽取兩人進(jìn)行訪談,求這兩人的兩科成績均為A的概率.

查看答案和解析>>

同步練習(xí)冊答案