13.銳角△ABC三邊長分別為x,x+1,x+2,則x的取值范圍是(  )
A.(-1,3)B.(1,3)C.(3,+∞)D.(1,3)∪(3,+∞)

分析 設(shè)最大角為C,由已知及余弦定理可得cosC=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$>0,解不等式組即可得解x的取值范圍.

解答 解:設(shè)銳角△ABC最大角為C,
∴cosC>0,
∵根據(jù)余弦定理,可得:cosC=$\frac{{x}^{2}+(x+1)^{2}-(x+2)^{2}}{2x(x+1)}$=$\frac{{x}^{2}-2x-3}{3{x}^{2}+2x}$>0,
∴$\left\{\begin{array}{l}{{x}^{2}-2x-3>0}\\{3{x}^{2}+2x>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-2x-3<0}\\{3{x}^{2}+2x<0}\end{array}\right.$,
∵x>0,
∴解得:x>3,即x的取值范圍是(3,+∞).
故選:C.

點評 本題主要考查了余弦定理及不等式組的解法及應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項和Sn滿足S3=0,S5=-5,則數(shù)列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前8項和為(  )
A.-$\frac{3}{4}$B.-$\frac{8}{15}$C.$\frac{3}{4}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項均為正數(shù)的數(shù)列{an}滿足log2an=1+log2an-1n∈N*,n≥2,且a1=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令cn=(3n-1)•an,求數(shù)列{cn}的前n項和Tn
(Ⅲ)設(shè)數(shù)列{bn}滿足bn=$\frac{{na_n^{\;}}}{{(2n+1)•{2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=( 。
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且橢圓C上的點到兩個焦點的距離之和為4.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC中角A、B、C所對的邊分別為a、b、c,若a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,則△ABC的面積為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:x2=2py的焦點F到準(zhǔn)線l的距離為2,點P、Q都是拋物線上的點,且點Q與點P關(guān)于y軸對稱.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程和焦點坐標(biāo);
(Ⅱ)圓E:x2+(y-4)2=1,過點P作圓C的兩條切線,分別與拋物線交于M,N兩點(M、N不與點P重合),若直線MN與拋物線在點Q處的切線平行,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,α=2$\sqrt{3}$,A=60°.
(1)若b=2,求cosB的值;
(2)若S△ABC=2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$(3an-1),數(shù)列{bn}為等差數(shù)列,且b1=a1,b5=a3
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{4({n}^{2}+n+1)}{_{n+1}^{2}-1}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案