5.已知兩個單位向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,$\overrightarrow c$=t$\overrightarrow a$+(1-t)$\overrightarrow b$,若$\overrightarrow b$⊥$\overrightarrow c$,則實數(shù)t的值為2.

分析 根據(jù)向量數(shù)量積的公式以及向量垂直的等價條件建立方程關系進行求解即可.

解答 解:∵兩個單位向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°
∴$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$||$\overrightarrow b$|cos60°=$\frac{1}{2}$,
∵$\overrightarrow c$=t$\overrightarrow a$+(1-t)$\overrightarrow b$,若$\overrightarrow b$⊥$\overrightarrow c$,
∴$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow b$•[t$\overrightarrow a$+(1-t)$\overrightarrow b$]=0,
即t$\overrightarrow b$•$\overrightarrow a$+(1-t)$\overrightarrow b$2=0,
則$\frac{1}{2}$t+1-t=0,
則$\frac{1}{2}$t=1,得t=2,
故答案為:2

點評 本題主要考查向量垂直的應用,根據(jù)向量垂直和向量數(shù)量積的關系建立方程關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.正四面體ABCD中,AB與平面ACD所成角的余弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題中為真命題的是( 。
A.命題“若x>1,則x2>1”的否命題
B.命題“若x=1,則x2+x-2=0”的否命題
C.命題“若x>y,則x>|y|”的逆命題
D.命題“若tanx=$\sqrt{3}$,則x=$\frac{π}{3}$”的逆否命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.用斜二測畫法畫出的水平放置的一角為60°,邊長是2cm 的菱形的直觀圖的面積是$\frac{\sqrt{6}}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(Ⅰ)若f(x)的圖象與x軸有且僅有一個交點,求b2+c2+2的取值范圍;
(Ⅱ)在b≥0的條件下,若f(x)的定義域[-1,0],值域也是[-1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某工廠共有10臺機器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機器產(chǎn)生的次品數(shù)P(萬件)與每臺機器的日產(chǎn)量x(萬件)(4≤x≤12)之間滿足關系:P=0.1x2-3.2lnx+3,已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件裝次品將虧損1萬元.(利潤=盈利-虧損)
(I)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(II)當每臺機器的日產(chǎn)量x(萬件)寫為多少時所獲得的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知a•$\sqrt{^{2}+1}$=4,則a2+2b2的最小值為8$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求過點A(1,3),斜率是直線y=-4x的斜率的$\frac{1}{3}$的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設a,b,c是△ABC的三邊長.求證:a2-b2-c2-2bc<0.

查看答案和解析>>

同步練習冊答案