15.已知a=log23,b=log2π,c=($\frac{2}{3}$)0.1,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 利用對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵1<a=log23<b=log2π,c=($\frac{2}{3}$)0.1<1,
∴c<a<b.
故選:B.

點(diǎn)評 本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a,b,c滿足c<b<a且ac<0,則下列選項中不一定能成立的是( 。
A.ab>acB.c(b-a)>0C.cb2<ca2D.ac(a-c)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.△ABC中,a,b是它的兩邊,S是△ABC的面積,若S=$\frac{1}{4}$(a2+b2),則△ABC的形狀為等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司一年經(jīng)銷某種商品,年銷售量400噸,每噸進(jìn)價5萬元,每噸銷售價8萬元.全年進(jìn)貨若干次,每次都購買x噸,運(yùn)費(fèi)為每次2萬元,一年的總存儲費(fèi)用為2x萬元.
(1)求該公司經(jīng)銷這種商品一年的總利潤y與x的函數(shù)關(guān)系;
(2)要使一年的總利潤最大,則每次購買量為多少?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知過定點(diǎn)P(2,0)的直線l與曲線y=$\sqrt{2-x^2}$相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是⑤.(寫出所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知tan145°=k,則sin2015°=$\frac{-k\sqrt{1{+k}^{2}}}{1{+k}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的各項均為正數(shù),其前n項和Sn,且滿足2Sn=an2+n-4.
(1)求證:{an}為等差數(shù)列;
(2)若bn=$\frac{1}{{{a_{n+1}}{a_n}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=-2x2+4x g(x)=log2(x+1)如果函數(shù)y=g[f(x)]在區(qū)間[1,m)上是單調(diào)遞減函數(shù),則m的取值范圍是1<m≤$\frac{2+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$
(1)用五點(diǎn)法完成下列表格,并畫出函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{11π}{12}]$上的簡圖;
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,函數(shù)g(x)=f(x)+m的最小值為2,試求處函數(shù)g(x)的最大值,指出x取值時,函數(shù)g(x)取得最大值.
x     
 2x+$\frac{π}{6}$     
 sin(2x+$\frac{π}{6}$)     
 f(x)     

查看答案和解析>>

同步練習(xí)冊答案