精英家教網 > 高中數學 > 題目詳情
20.如圖所示,在直角梯形ABCD中,動點P從B點出發(fā),由B→C→D→A沿梯形各邊運動,設點P運動的路程為x,△ABP的面積為f(x),如果AB=8,BC=4,CD=5,DA=5,求函數f(x)的解析式.

分析 根據圖象關系建立f(x)與x的函數關系式,即可得到函數的解析式.

解答 解:根據圖2可知當點P在CD上運動時,△ABP的面積不變,與△ABC面積相等;且不變的面積是在x=4,x=9之間;
所以在直角梯形ABCD中BC=4,CD=5,AD=5.
過點D作DN⊥AB于點N,則有DN=BC=4,BN=CD=5,
在Rt△ADN中,AN=$\sqrt{A{D}^{2}-D{N}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3
AB=8,x在BC段時,x∈[0,4]
所以△ABC的面積為:
f(x)=$\frac{1}{2}$AB•BP=$\frac{1}{2}$×8x=4x.
x∈(4,9],△ABC的面積為:
f(x)=$\frac{1}{2}AB•BC$=$\frac{1}{2}×8×4$=16,
x∈(9,14],△ABC的面積為:
f(x)=$\frac{1}{2}AB•\frac{4}{5}(14-x)$=$\frac{224-16x}{5}$,
函數f(x)的解析式:f(x)=$\left\{\begin{array}{l}{4x,x∈[0,4]}\\{16,x∈(4,9]}\\{\frac{224-16x}{5},x∈(9,14]}\end{array}\right.$.

點評 主要考查了函數圖象的讀圖能力,能根據函數圖象的性質和圖象上的數據分析得出函數的類型和所需要的條件,結合實際意義得到正確的結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

10.已知命題P:4x-a•2x+1≥0對?x∈[-1,1]恒成立,命題Q:f(x)=log2(ax2-2x+$\frac{1}{3}$)的值域是R,若滿足P且Q為假,P或Q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知不等式組$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$表示的平面區(qū)域為Ω,若在Ω中存在一點P(x,y)使得-2≤ax-y≤3成立,則實數a的取值范圍是-2≤a≤$\frac{9}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.Rt△ABC中,∠C為直角,CD為斜邊上的高h,角A、B、C的對邊分別為a,b,c,與Rt△ABC相對應的是直角三棱錐P-ABC,即在頂點P處構成3個直二面角.三條側棱長分別為PA=a,PB=b,PC=c,高PO=h,四面體P-ABC的面△PAB,△PAC,△PBC的面積分別為s1,s2,s3,底面△ABC的面積為s.
(1)在直角三角形ABC中有結論$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$,由此猜想四面體P-ABC中的結論:$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$;
在直角三角形ABC中有勾股定理c2=a2+b2,類比直角三角形的勾股定理,猜想,在四面體P-ABC中有:$s_1^2+s_2^2+s_3^2={s^2}$成立.
(2)上述猜想都是正確的嗎?試證明第二個猜想.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知定義在(0,+∞)上的函數y=f(x)滿足f(x)=[f′(x)-1]x,且f(1)=0.則函數y=f(x)的最小值為( 。
A.-$\frac{1}{e}$B.-1C.-eD.0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.設f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,則z=x-y的最大值為( 。
A.$\frac{1}{2}$B.1C.3D.-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.如圖所示,是我國古代軍隊用于屯糧的糧倉的三視圖,糧倉的底部建在地面上,圖中數據單位:m,cosα=$\frac{1}{6}$,cosβ=$\frac{3}{4}$,則該糧倉的側面積為( 。
A.$\frac{21π}{2}$m2B.$\frac{23π}{2}$m2C.12πm2D.$\frac{25π}{2}$m2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知集合M={(x,y)|y=x+1},N={(x,y)|y=x2-x-2},求M∩N.

查看答案和解析>>

同步練習冊答案