7.設(shè)函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),若f(x)-xf′(x)>0,則有( 。
A.f(-1)-f(1)<0B.f(-1)-f(1)>0C.f(-1)+f(1)<0D.f(-1)+f(1)>0

分析 設(shè)g(x)=$\frac{f(x)}{x}$,求出g(x)的導(dǎo)數(shù),判斷g(x)的單調(diào)性,從而求出答案即可.

解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,
則g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$<0,
∴g(x)是減函數(shù),
∴$\frac{f(-1)}{-1}$>$\frac{f(1)}{1}$,
即f(-1)+f(1)<0,
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)頂點(diǎn)在原點(diǎn),焦點(diǎn)是F(6,0)的拋物線的方程.
(2)求經(jīng)過(1,2)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角C=$\frac{π}{3}$,邊AB=1,則△ABC周長不可能是下列哪個數(shù)值(  )
A.3B.1+$\sqrt{3}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機(jī)調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)設(shè)該市有500萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由:
(Ⅲ)估計本市居民的月用水量平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直三棱柱ABC-A1B1C1所有棱長均為1,則該三棱柱的外接球的表面積為( 。
A.$\frac{4π}{3}$B.$\frac{5π}{3}$C.D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足數(shù)列{2an}是等比數(shù)列,若a4+a1009+a2014=$\frac{3}{2}$,則S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)(x∈R)滿足f(-x)=4-f(x),若函數(shù)y=$\frac{2x+1}{x}$與 y=f(x) 圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^{m}$(xi+yi)=2m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知過點(diǎn)A(0,1)且斜率為k的直線?與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(I)寫出直線?的方程和圓C的圓心坐標(biāo)和半徑,并k的取值范圍;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z1=(3-i)(2-i)與復(fù)數(shù)z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在同一個象限,則z2可能為( 。
A.2+iB.-3+4iC.-1-7iD.1+$\frac{1}{i}$

查看答案和解析>>

同步練習(xí)冊答案