分析 (1)利用點(diǎn)斜式方程得出l方程,根據(jù)圓的標(biāo)準(zhǔn)方程的意義得出圓心和半徑,根據(jù)直線與圓相交得出不等式解出k的范圍;
(2)聯(lián)立方程組得出M,N的坐標(biāo)的關(guān)系,代入數(shù)量積公式求出k,從而確定直線經(jīng)過圓心,得出|MN|=2r.
解答 解:(1)依題意設(shè),直線l的方程為y=kx+1.
圓C:(x-2)2+(y-3)2=1的圓心坐標(biāo)為(2,3),半徑r=1.
∵l與C交于兩點(diǎn),∴$\frac{{|{2k-3+1}|}}{{\sqrt{1+{k^2}}}}<1$.
∴3k2-8k+3<0,解得$\frac{{4-\sqrt{7}}}{3}<k<\frac{{4+\sqrt{7}}}{3}$.
∴k的取值范圍為$(\frac{{4-\sqrt{7}}}{3},\frac{{4+\sqrt{7}}}{3})$.
(2)設(shè)M(x1,y1),N(x2,y2).
由$\left\{\begin{array}{l}y=kx+1\\{(x-2)^2}+{(y-3)^2}=1\end{array}\right.$,得(1+k2)x2-4(1+k)x+7=0.
∴${x_1}+{x_2}=\frac{4(1+k)}{{1+{k^2}}},{x_1}{x_2}=\frac{7}{{1+{k^2}}}$.$\overline{OM}•\overline{ON}={x_1}{x_2}+{y_1}{y_2}$=x1x2+(kx1+1)(kx2+1)=(1+k2)x1x2+k(x1+x2)+1=$\frac{4k(1+k)}{{1+{k^2}}}+8$.
∵$\overrightarrow{OM}•\overrightarrow{ON}=12$,∴$\frac{4k(1+k)}{{1+{k^2}}}+8=12$,解得k=1,
∴l(xiāng)的方程是y=x+1.故圓心C在l上,
∴|MN|=2.
點(diǎn)評 本題考查了直線與圓的方程,直線與圓的位置關(guān)系,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.3 | B. | 0.6 | C. | 0.7 | D. | 0.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)-f(1)<0 | B. | f(-1)-f(1)>0 | C. | f(-1)+f(1)<0 | D. | f(-1)+f(1)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | me=mo | B. | mo<me | C. | me<mo | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c≥$\sqrt{2}$-1 | B. | c≤$\sqrt{2}$-1 | C. | -1-$\sqrt{2}$≤c$≤\sqrt{2}-1$ | D. | $\sqrt{2}$-1≤c≤$\sqrt{2}$+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com