分析 分別在△ACD、△ABD中根據正弦定理列式,再將所得的式子相除并利用比例的性質,可得$\frac{AB}{AC}$=$\frac{BD}{DC}$成立.
解答 證明:設∠CAD=∠DAE=β,
在△ACD中,由正弦定理得$\frac{DC}{sinβ}=\frac{AC}{sin∠D}$…①,
在△ABD中,由正弦定理得$\frac{BD}{sin∠BAD}=\frac{AB}{sin∠D}$,即$\frac{BD}{sinβ}=\frac{AB}{sin∠D}$…②
①②兩式相除,可得$\frac{AB}{AC}$=$\frac{BD}{DC}$,結論成立.
點評 本題考查利用正弦定理解三角形等知識,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若a⊥α,b?α,則a⊥b | B. | 若a⊥α,a∥b,則b⊥α | ||
C. | 若a⊥b,b⊥α,則a∥α或a?α | D. | 若a∥α,b?α,則a∥b |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com