分析 由底面ABCD為矩形,AB=4,BC=4$\sqrt{3}$,且四棱錐P-ABCD體積的最大值為64$\sqrt{3}$,可得四棱錐P-ABCD的高的最大值為$\frac{3×64\sqrt{3}}{4×4\sqrt{3}}$=12,矩形的對(duì)角線長(zhǎng)為8,由射影定理求出R,即可求出球O的表面積.
解答 解:∵底面ABCD為矩形,AB=4,BC=4$\sqrt{3}$,且四棱錐P-ABCD體積的最大值為64$\sqrt{3}$,
∴四棱錐P-ABCD的高的最大值為$\frac{3×64\sqrt{3}}{4×4\sqrt{3}}$=12,矩形的對(duì)角線長(zhǎng)為8
設(shè)球的半徑為R,則由射影定理可得16=12×(2R-12),∴R=$\frac{20}{3}$
∴球O的表面積為S=$4π×(\frac{20}{3})^{2}$=$\frac{1600π}{9}$
故答案為:$\frac{1600π}{9}$.
點(diǎn)評(píng) 本題考查球O的表面積,考查四棱錐體積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 4 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg | |
B. | 回歸直線過樣本的中心($\overline{x}$,$\overline{y}$) | |
C. | y與x具有正的線性相關(guān)關(guān)系 | |
D. | 若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com