8.對于函數(shù)f(x)=x3+ax2-x+1,給出下列命題:
①該函數(shù)必有2個極值;       ②該函數(shù)的極大值必大于1;
③該函數(shù)的極小值必小于1;   ④方程f(x)=0一定有三個不等的實數(shù)根.
則正確的命題序號為:①②③.

分析 先求導數(shù),通過討論參數(shù)a的不同取值討論極值的大。賹(shù)的判別式很大于0,說明有兩個極值.②因為f(0)=1,兩個極值點一個大于零,一個小于0,所以函數(shù)的極小值必小于1,極大值必大于1,所以可判斷②③.④因為極小值的大小不確定,所以無法判斷函數(shù)的零點個數(shù).

解答 解:①函數(shù)的導數(shù)為f'(x)=3x2+2ax-1.對應的判別式△=4a2+12>0,
說明導數(shù)方程f'(x)=0有兩個不同的根,即函數(shù)必有兩個極值點.所以①正確.
②因為方程f'(x)=0的兩根之和為-$\frac{1}{3}$<0,
所以兩個根一個為x1<0,一個為x2>0,且在x1處取得極大值,x2處取得極小值.
在又f(0)=1,所以該函數(shù)的極大值必大于1,函數(shù)的極小值必小于1,即②③正確.
④因為極小值不確定,所以當極小值小于0時,函數(shù)有三個不同的零點,
當極小值等于0時,函數(shù)有兩個不同的零點,當極小值大于0時,
函數(shù)只有一個零點,所以④不正確.
所以正確的是①②③.
故答案為:①②③.

點評 本題的考點是導數(shù)與函數(shù)極值之間的關(guān)系,以及函數(shù)與方程問題.考查數(shù)形結(jié)合的數(shù)學思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=lnx+x2-ax.
(Ⅰ)當a=3時,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若f(x)≤$\frac{1}{2}$(3x2+$\frac{1}{x^2}$-6x)在x∈(0,1]內(nèi)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{9}{4}(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,則f[f($\frac{1}{4}$)]的值是( 。
A.$\frac{1}{9}$B.9C.-$\frac{1}{9}$D.-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.袋中裝有大小相同且質(zhì)地一樣的五個球,五個球上分別標有2,3,4,6,9這五個數(shù).現(xiàn)從中隨機選取兩個球,則所選的兩個球上的數(shù)字至少有一個是奇數(shù)的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率是$\frac{{\sqrt{2}}}{2}$,其中一個焦點坐標為$(\sqrt{2},0)$.
(1)求橢圓M的標準方程;
(2)若直線y=x+m與橢圓M交于A,B兩點,且△OAB(O為坐標原點)面積為$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)y=sin(πx+φ)(φ>0)的部分圖象如圖所示,設P是圖象的最高點,A,B是圖象與x軸的交點,記∠APB=θ,則sin2θ的值是$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐V-ABCD中,VD⊥平面ABCD,VD=DC=BC=2,AB=4,
AB∥CD,BC⊥CD.
(1)求證:BC⊥VC;
(2)求點A到平面VBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],則tanθ=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos2x+sin22x-$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期及對稱中心;
(2)在△ABC中,角B為鈍角,角A、B、C的對邊分別為a、b、c,f($\frac{B}{4}$)=$\frac{\sqrt{2}}{2}$,且sinC=$\sqrt{2}$sinA,S△ABC=4,求c的值.

查看答案和解析>>

同步練習冊答案