16.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{2x-y+a≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,其中a=${∫}_{0}^{3}$(x2-1)dx,則目標(biāo)函數(shù)z=2x-3y的最小值為-18.

分析 根據(jù)定積分求出a的值,畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),從而求出z的最小值即可.

解答 解:a=${∫}_{0}^{3}$(x2-1)dx=($\frac{1}{3}$x3-x)${|}_{0}^{3}$=6,
畫出滿足條件的平面區(qū)域,如圖示:
由z=2x-3y得:y=$\frac{2}{3}$x-$\frac{z}{3}$,
顯然直線過A(0,6)時,-$\frac{z}{3}$最大,即z最小,
z的最小值是2×0-3×6=-18,
故答案為:-18.

點(diǎn)評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想以及定積分的計(jì)算問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)正項(xiàng)數(shù)列{an}滿足:a1=1,且對任意的n,m∈N+,n>m,均有a2n+m•a2n-m=n2-m2成立.
(1)求a2,a3的值,并求{an}的通項(xiàng)公式;
(2)(ⅰ)比較a2n-1+a2n+1與2a2n的大;
(ⅱ)證明:a2+a4+…+a2n>$\frac{n}{n+1}({a_1}+{a_3}+…+{a_{2n+1}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.現(xiàn)有一根n節(jié)的竹竿,自上而下每節(jié)的長度依次構(gòu)成等差數(shù)列,已知最上面三節(jié)的長度之和為36,最下面三節(jié)的長度之和為114,整個竹竿的長度為400,則n=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知sinB-sinC=$\frac{1}{4}$sinA,2b=3c,則cosA=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統(tǒng)計(jì)了2012到2016年五年間本公司職員每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)數(shù)據(jù)如表所示:
年份(x)20122013201420152016
家庭數(shù)(y)610162226
(Ⅰ)從這5年中隨機(jī)抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\hat y=\hat bx+\hat a$,判斷它們之間是正相關(guān)還是負(fù)相關(guān);并根據(jù)所求出的直線方程估計(jì)該公司2019年春節(jié)期間外出旅游的家庭數(shù).
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點(diǎn)(1,1)且與直線2x-y+1=0平行的直線方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}中,a1=1,a2=3,且對任意n∈N+,a${\;}_{n+2}≤{a}_{n}+3•{2}^{n}$,an+1≥2an+1恒成立,則an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),將y=f(x)和y=f′(x)的圖象畫在同一個直角坐標(biāo)系中,不可能正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正三棱柱ABC-A′B′C′的各棱長相等,表面積為12+2$\sqrt{3}$,則三棱柱ABC-A′B′C′的體積為2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案