分析 (1)將A代入橢圓方程,可得m,進(jìn)而得到橢圓方程和伴橢圓方程,討論直線l的斜率不存在和存在,設(shè)出l的方程,代入橢圓方程運(yùn)用判別式為0,求得k,再由直線和圓相交的弦長(zhǎng)公式,計(jì)算即可得到所求弦長(zhǎng);
(2)設(shè)直線AB,AC的方程分別為y-1=k1(x-2),y-1=k2(x-2),設(shè)點(diǎn)B(x1,y1),C(x2,y2),聯(lián)立橢圓方程求得交點(diǎn)B,C的坐標(biāo),運(yùn)用直線的斜率公式,計(jì)算直線OB,OC的斜率相等,即可得證.
解答 解:(1)由點(diǎn)A(2,1)是橢圓G:x2+4y2=m上的點(diǎn).
可得22+4•12=m,即有m=8,
即橢圓G:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1,
可得a2=8,b2=2,可得伴隨圓G1的方程為x2+y2=10,
當(dāng)直線l的斜率不存在時(shí),顯然不滿足l與橢圓G有且只有一個(gè)公共點(diǎn);
當(dāng)直線l的斜率存在時(shí),設(shè)直線$l:y=kx+\sqrt{10}$,
與橢圓G:x2+4y2=8聯(lián)立,得$(1+4{k^2}){x^2}+8\sqrt{10}kx+32=0$,
由直線l與橢圓G有且只有一個(gè)公共點(diǎn),得$△={(8\sqrt{10}k)^2}-4•(1+4{k^2})•32=0$,
解得k=±1,由對(duì)稱性取直線$l:y=x+\sqrt{10}$,即$l:x-y+\sqrt{10}=0$;
圓心到直線l的距離為$d=\frac{{|0+0+\sqrt{10}|}}{{\sqrt{1+1}}}=\sqrt{5}$,
直線l被橢圓G的伴隨圓G1所截得的弦長(zhǎng)=$2\sqrt{10-5}=2\sqrt{5}$;
(2)證明:設(shè)直線AB,AC的方程分別為y-1=k1(x-2),y-1=k2(x-2),
設(shè)點(diǎn)B(x1,y1),C(x2,y2),
聯(lián)立G:x2+4y2=8,得$(1+4{k_1}^2){x^2}-(16{k_1}^2-8{k_1})x+16{k_1}^2-16{k_1}-4=0$,
則2${x_1}=\frac{{16{k_1}^2-16{k_1}-4}}{{1+4{k_1}^2}}$,得${x_1}=\frac{{8{k_1}^2-8{k_1}-2}}{{1+4{k_1}^2}}$;
同理${x_2}=\frac{{8{k_2}^2-8{k_2}-2}}{{1+4{k_2}^2}}$,
斜率kOB=$\frac{{y}_{1}}{{x}_{1}}$=$\frac{{k}_{1}({x}_{1}-2)+1}{{x}_{1}}$=$\frac{-4{{k}_{1}}^{2}-4{k}_{1}+1}{8{{k}_{1}}^{2}-8{k}_{1}-2}$,
同理kOC=$\frac{-4{{k}_{2}}^{2}-4{k}_{2}+1}{8{{k}_{2}}^{2}-8{k}_{2}-2}$;
因?yàn)?k1•k2=-1,所以kOC=$\frac{-4(\frac{-1}{4{k}_{1}})^{2}-4(\frac{-1}{4{k}_{1}})+1}{8(\frac{-1}{4{k}_{1}})^{2}-8(\frac{-1}{4{k}_{1}})-2}$=$\frac{-4{{k}_{1}}^{2}-4{k}_{1}+1}{8{{k}_{1}}^{2}-8{k}_{1}-2}$=kOB,
即有B,O,C三點(diǎn)共線.
點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,橢圓和伴橢圓方程的求法,注意運(yùn)用點(diǎn)滿足橢圓方程,考查直線和圓相交的弦長(zhǎng)公式,同時(shí)考查三點(diǎn)共線的條件:斜率相等,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com