已知A,B,C,D,E為拋物線y=
1
4
x2
上不同的五個點,焦點為F,且
FA
+
FB
+
FC
+
FD
+
FE
=
0
,則|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=
 
考點:拋物線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:
FA
+
FB
+
FC
+
FD
+
FE
=
0
,可得xA-1+xB-1+xC-1+xD-1+xE-1=0,再利用焦點弦長公式即可得出.
解答: 解:∵
FA
+
FB
+
FC
+
FD
+
FE
=
0
,
∴xA-1+xB-1+xC-1+xD-1+xE-1=0,
|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=xA+xB+xC+xD+xE+
5P
2
=5+5=10.
故答案為:10.
點評:本題考查了拋物線的焦點弦長公式、向量運算,考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,
x2
a2
+
y2
b2
=1(a>b>0),(0,
3
)
、F分別為F1(-c,0),F(xiàn)2(c,0)、BC的中點.
(Ⅰ)求證:C1F∥平面ABE;
(Ⅱ)求三棱錐A-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=4,an+1=an+p•3n+1,n∈N*,p為常數(shù)a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項公式;
(2)設數(shù)列{bn},bn=
n2
an-n
,求{bn}的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導函數(shù),則函數(shù)F(x)=f(x)f′(x)+f2(x)的最大值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
7
3
B、
9
2
C、
7
2
D、
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

表面積為6π的圓柱,當其體積最大時,該圓柱的高與底面半徑的比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:lg5(lg8+lg1000)+(lg2 
3
2+lg
1
6
+lg0.06.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零
a
,
b
滿足|
a
+
b
|=|
a
-
b
|,則
a
,
b
的夾角的大小為
 

查看答案和解析>>

同步練習冊答案