4.中國天氣網(wǎng)2016年3月4日晚六時通過手機發(fā)布的3月5日通州區(qū)天氣預(yù)報的折線圖(如圖),其中上面的折線代表可能出現(xiàn)的最高氣溫,下面的折線代表可能出現(xiàn)的最低氣溫.
(Ⅰ)指出最高氣溫與最低氣溫的相關(guān)性;
(Ⅱ)估計在10:00時最高氣溫與最低氣溫的差;
(Ⅲ)比較最低氣溫與最高氣溫方差的大。ńY(jié)論不要求證明).

分析 (Ⅰ)由最高氣溫與最低氣溫的折線圖得到最高氣溫越高,相應(yīng)地最低氣溫也越高;
(Ⅱ)求出10:00時的最高溫度和最低溫度,從而求出其溫差;
(Ⅲ)由最高氣溫曲線波動較小,得到最高氣溫方差小于最低氣溫方差.

解答 解:(Ⅰ)由最高氣溫與最低氣溫的折線圖得到:
最高氣溫與最低氣溫之間成正相關(guān),
即最高氣溫越高,相應(yīng)地最低氣溫也越高.
(Ⅱ)$\frac{1}{2}$(10+13)=11.5,$\frac{1}{2}$(4+10)=7,
11.5-7=4.5,
故在10:00時最高氣溫與最低氣溫的差是4.5°;
(Ⅲ)由最高氣溫與最低氣溫的折線圖得到:
最高氣溫曲線波動較小,
∴最高氣溫方差小于最低氣溫方差.

點評 本題考查折線圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=x3-ax-b,x∈R,其中a,b∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極值點x0,且f(x1)=f(x0),其中x1≠x0,求證:x1+2x0=0;
(3)設(shè)a>0,函數(shù)g(x)=|f(x)|,求證:g(x)在區(qū)間[-1,1]上的最大值不小于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點A是拋物線y=$\frac{1}{4}$x2的對稱軸與準(zhǔn)線的交點,點F為該拋物線的焦點,點P在拋物線上且滿足|PF|=m|PA|,則m的最小值為-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)有四個數(shù),前三個數(shù)成等比數(shù)列,其和為14,后三個數(shù)成等差數(shù)列,其和為24,求此四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2$\sqrt{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C:y=$\sqrt{x}$在x=1處的切線為l.
(1)求直線l的方程;
(2)求直線l與曲線C以及x軸所圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|1≤x≤6},關(guān)于x的二次方程:$\frac{1}{4}$x2+$\sqrt$x+2c=0.
請回答下列問題:
(Ⅰ)若b,c∈A,且c,c∈Z,求該二次方程有解的概率;
(Ⅱ)若b,c∈A,求該二次方程有解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.執(zhí)行如圖的程序框圖,若輸入k的值為5,則輸出S的值為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從4男2女共6名學(xué)生中選派2人參加某項愛心活動,則所選2人中至少有1名女生的概率為(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案