分析 (I)取PA中點(diǎn)Q,連QF、QE,通過證明四邊形BEQF是平行四邊形得出BF∥EQ,從而有BF∥平面PAE;
(II)過A做AN⊥PE于N,連CN,通過證明△PAE≌△PCE得出CN⊥PE,于是PE⊥平面NAC,利用余弦定理求出cos∠APE,得出PN.
解答 解:(I)取PA中點(diǎn)Q,連QF、QE.
則QF∥PD∥BE,$QF=\frac{1}{2}PD=BE=1$,
四邊形QFBE是平行四邊形,∴BF∥EQ,
又QE?平面PAE,BF?平面PAE,
∴BF∥平面PAE.
(II) 線段PE上存在一點(diǎn)N,使PE⊥平面NAC,PN=2.
過A做AN⊥PE于N,連CN,
∵PD⊥平面ABCD,AD,CD?平面ABCD,
∴PD⊥AD,PD⊥CD,
∵AD=CD=PD=2,∴$AP=CP=2\sqrt{2}$,
∵BE∥PD,
∴BE⊥平面ABCD,∵AB,CB?平面ABCD,
∴BE⊥AB,BE⊥CB,
∵AB=CB=2,BE=1,∴$AE=CE=\sqrt{5}$,
△PAE≌△PCE,
∵AN⊥PE,∴CN⊥PE,又AN∩CN=N,AN,CN?平面NAC,
∴PE⊥平面NAC.
∵PD⊥平面ABCD,BD?平面ABCD,
∴PD⊥BD,
∵PD=2,BD=2$\sqrt{2}$,BE=1,∴PE=$\sqrt{(2-1)^{2}+(2\sqrt{2})^{2}}$=3,
在△PAE中$cos∠APE=\frac{{P{A^2}+P{E^2}-A{E^2}}}{2PA•PE}=\frac{{{{(2\sqrt{2})}^2}+{3^2}-{{(\sqrt{5})}^2}}}{{2•2\sqrt{2}•3}}=\frac{{\sqrt{2}}}{2}$
所以$PN=PAcos∠APE=2\sqrt{2}×\frac{{\sqrt{2}}}{2}=2$.
點(diǎn)評 本題考查了線面平行,線面垂直的判定,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{35}$ | B. | $\frac{34}{35}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | 0 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com