15.下列三個命題:
①命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;
②若p:x(x-2)≤0,q:log2x≤1,則p是q的充要條件;
③若命題p:存在x∈R,使得2x<x2,則?p:任意x∈R,均有2x≥x2;
其中正確命題的個數(shù)是(  )
A.0個B.1個C.2個D.3個

分析 ①根據(jù)逆否命題的定義進行判斷,
②根據(jù)充分條件和必要條件的定義進行判斷,
③根據(jù)特稱命題的否定是全稱命題進行判斷.

解答 解:①命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;故①正確,
②若p:x(x-2)≤0,則p:0≤x≤2,q:log2x≤1,得0<x≤2,則p是q的必要不充分條件,故②錯誤;
③若命題p:存在x∈R,使得2x<x2,則?p:任意x∈R,均有2x≥x2;正確,
故選:B

點評 本題主要考查命題的真假判斷,涉及四種命題的判斷,充分條件和必要條件以及含有量詞的命題的否定,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.在極坐標系中,曲線L的極坐標方程為:7cos${\;}^{2}θ=\frac{144}{{ρ}^{2}}-9$,以極點為原點,極軸為x的非負半軸,取與極坐標系相同的單位長度,建立平面直角坐標系,在直角坐標系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=7+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)在直角坐標系中,寫出曲線L的一個參數(shù)方程和直線l的普通方程;
(2)在曲線L上任取一點P,求點P到直線l距離的最小值,并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給出下列命題:
(1)終邊在y軸上的角的集合是{a|a=$\frac{kπ}{2}$,k∈Z};
(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移$\frac{π}{6}$個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin[2(x+$\frac{π}{6}$)];
(3)函數(shù)f(x)=$\frac{1}{2}$sinx+$\frac{1}{2}$|sinx|的值域是[-1,1].
以上正確的是(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)f(x)=ln(ax)(0<a<1),過點P(a,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C在點Q處的切線交x軸于點R,則△PQR的面積的最大值是( 。
A.1B.$\frac{4}{e^2}$C.$\frac{1}{2}$D.$\frac{8}{e^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,設(shè)計一個程序為秘鑰,當接收方收到密文為14,9,23,28時,解密得到的明文為(  )
A.4,6,1,7B.7,6,1,4C.1,6,4,7D.6,4,1,7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.定義某種新運算“?”:S=a?b的運算原理為如圖的程序框圖所示,則式子5?4-3?6=( 。
A.2B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.命題p:函數(shù)y=x2-4x+1在區(qū)間(-∞,a)上是減函數(shù)
命題q:函數(shù)y=log(7-2a)x在(0,+∞)上是增函數(shù).
若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知z(1-i)=2i(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,且過點$({2,\sqrt{2}})$,四邊形ABCD的頂點在橢圓E上,且對角線AC,BD過原點O,${k_{AC}}•{k_{BD}}=-\frac{b^2}{a^2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍;
(2)求證:四邊形ABCD的面積為定值.

查看答案和解析>>

同步練習冊答案