16.若f(x)=x2+2x-3,則f(x)在區(qū)間[-2,1]上的值域是( 。
A.[-4,-3]B.[-3,0]C.[-4,0]D.[0,2]

分析 求得對(duì)稱軸方程,結(jié)合二次函數(shù)的圖象,可得f(x)的單調(diào)區(qū)間,計(jì)算即可得到最值,進(jìn)而得到值域.

解答 解:f(x)=x2+2x-3的對(duì)稱軸為x=-1,
可得f(x)在[-2,-1]遞減,在[-1,1]遞增,
即有f(-1)取得最小值,且為-4,
又f(-2)=-3,f(1)=0,可得f(x)的最大值為0.
則f(x)在區(qū)間[-2,1]上的值域是[-4,0].
故選:C.

點(diǎn)評(píng) 本題考查二次函數(shù)的值域的求法,注意運(yùn)用對(duì)稱軸和區(qū)間的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知實(shí)數(shù)x.y滿足x2+y2-2x+2$\sqrt{3}$y=0,若總有x+$\sqrt{3}$y+m≥0,則實(shí)數(shù)m的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=$\frac{1}{cosx\sqrt{1+ta{n}^{2}x}}$+$\frac{2tanx}{\sqrt{\frac{1}{co{s}^{2}x}-1}}$值域中元素的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,ABCD-A1B1C1D1是正方體,E,F(xiàn),G,H,M,N分別是所在棱的中點(diǎn),則下列結(jié)論錯(cuò)誤的有①③④
①GH和MN是平行直線;GH和EF是相交直線
②GH和MN是平行直線;MN和EF是相交直線
③GH和MN是相交直線;GH和EF是異面直線
④GH和EF是異面直線;MN和EF也是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)已知sinx-cosx=$\frac{1}{5}$,求sinxcosx的值;
(2)a為實(shí)數(shù),求函數(shù)f(x)=sinxcosx+a(sinx-cosx),x∈[$\frac{π}{2}$,π]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知連續(xù)不斷函數(shù)f(x)=sinx+x-$\frac{π}{4}$(0<x<$\frac{π}{2}$),g(x)=cosx-x+$\frac{π}{4}$(0<x<$\frac{π}{2}$).
(1)求證:函數(shù)f(x)在區(qū)間(0,$\frac{π}{2}$)上有且只有一個(gè)零點(diǎn);
(2)現(xiàn)已知函數(shù)g(x)在(0,$\frac{π}{2}$)上有且只有一個(gè)零點(diǎn)(不必證明),記f(x)和g(x)在(0,$\frac{π}{2}$)上的零點(diǎn)分別為x1,x2,求證:x1+x2=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知直線系M:(x-3)cosθ+ysinθ=1(0≤θ≤2π),則下列命題正確的是②③⑤⑥
①M(fèi)中所有直線均過(guò)一個(gè)定點(diǎn)
②存在定點(diǎn)P不在M中任意一條直線上
③對(duì)于任意正整數(shù)n(n≥3),存在正n邊形其所有邊均在M中直線上
④M中的直線所圍成的正三角形面積都相等
⑤存在一個(gè)圓與所用直線不相交
⑥存在一個(gè)圓與所有直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=m(0<m<A)的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別為3,5,11,則f(x)的單調(diào)遞減區(qū)間是(  )
A.[8k,8k+4],k∈ZB.[8kπ,8kπ+4],k∈ZC.[8k-4,8k],k∈ZD.[8kπ-4,8kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,四邊形ABCD中,∠BAD=135°,∠ADC=120°,∠BCD=45°,∠ABC=60°,BC=2,則線段AC長(zhǎng)度的取值范圍是$[\sqrt{3}\;,\;2)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案