A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |
分析 根據(jù)條件便可得出△AOB為Rt△,且∠AOB=90°,從而在Rt△AOB中,可求出∠OAB=60°,進(jìn)而便得到$\overrightarrow{OC}⊥\overrightarrow{AB}$,從而$\overrightarrow{OC}•\overrightarrow{AB}=0$,帶入$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB},\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$進(jìn)行數(shù)量積的運(yùn)算便可得到3n-m=0.而由條件容易得出m+n=1,這兩式聯(lián)立即可解出m,n,從而便可求出m-n的值.
解答 解:∵$\overrightarrow{OA}•\overrightarrow{OB}=0$;
∴$\overrightarrow{OA}⊥\overrightarrow{OB}$;
∴∠AOB=90°,且$|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$;
∴$|\overrightarrow{AB}|=2$;
∴$cos∠OAB=\frac{\sqrt{3}}{2}$;
∴∠OAB=60°;
又∠AOC=30°;
∴∠OCA=90°;
即$\overrightarrow{OC}⊥\overrightarrow{AB}$;
∴$\overrightarrow{OC}•\overrightarrow{AB}=\overrightarrow{OC}•(\overrightarrow{OB}-\overrightarrow{OA})$
=$(m\overrightarrow{OA}+n\overrightarrow{OB})•(\overrightarrow{OB}-\overrightarrow{OA})$
=$m\overrightarrow{OA}•\overrightarrow{OB}-m{\overrightarrow{OA}}^{2}+n{\overrightarrow{OB}}^{2}-n\overrightarrow{OA}•\overrightarrow{OB}$
=0-m+3n-0
=0;
即3n-m=0①;
∵$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,且A,C,B三點(diǎn)共線;
∴m+n=1②;
∴①②聯(lián)立得,$m=\frac{3}{4},n=\frac{1}{4}$;
∴$m-n=\frac{1}{2}$.
故選:B.
點(diǎn)評(píng) 考查向量垂直的充要條件,三角函數(shù)的定義,已知三角函數(shù)值求角,向量減法的幾何意義,以及向量數(shù)量積的運(yùn)算及計(jì)算公式,三點(diǎn)A,B,C共線的充要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分且必要條件 | |
B. | 充分不必要條件 | |
C. | 必要不充分條件 | |
D. | 既不是的充分條件也不是的必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2cm | B. | 4cm | C. | 6cm | D. | 8cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com