分析 利用兩角差的正弦化簡,再由已知求得ω與φ的值,可得函數(shù)f(x)的解析式.
(1)在函數(shù)解析式中取x=$\frac{π}{8}$,求f($\frac{π}{8}$)的值;
(2)求出函數(shù)y=f(x)+f(x+$\frac{π}{4}$),利用輔助角公式化積后可得函數(shù)的最大值及對應的x的值.
解答 解:f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$).
∵函數(shù)y=f(x)的圖象的相鄰對稱軸之間的距離為$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,即T=π,則ω=$\frac{2π}{T}$=$\frac{2π}{π}$=2.
∴f(x)=2sin(2x+φ-$\frac{π}{6}$).
又f(x)為偶函數(shù),∴φ-$\frac{π}{6}$=$\frac{π}{2}$+kπ,即φ=$\frac{2π}{3}$+kπ,k∈Z.
∵0<φ<π,∴φ=$\frac{2π}{3}$,
則f(x)=2sin(2x+$\frac{2π}{3}$-$\frac{π}{6}$)=2sin(2x+$\frac{π}{2}$)=2cos2x.
(1)f($\frac{π}{8}$)=2cos(2×$\frac{π}{8}$)=2cos$\frac{π}{4}$=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$;
(2)y=f(x)+f(x+$\frac{π}{4}$)=2cos2x+2cos(2x+$\frac{π}{2}$)=-2sin2x+2cos2x=-2$\sqrt{2}$sin(2x-$\frac{π}{4}$).
當2x-$\frac{π}{4}$=-$\frac{π}{2}$+2kπ,即x=-$\frac{π}{8}$+kπ,k∈Z時,函數(shù)y=f(x)+f(x+$\frac{π}{4}$)取最大值2$\sqrt{2}$.
點評 本題考查三角函數(shù)中的恒等變換應用,考查了y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-y=0 | B. | x-2y+3=0 | C. | x+y-3=0 | D. | x-2y-3=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | -3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com