分析 (Ⅰ)由已知得AB∥CD,從而AB∥面PCD,由此能證明AB∥EF.
(Ⅱ)推導(dǎo)出CD⊥AD,CD⊥AF,AF⊥PD,由此能證明AF⊥平面PCD.
(Ⅲ)若存在符合題意的點(diǎn)M,則平面PBC⊥平面PCD,而這與題意相矛盾,故在(Ⅱ)的條件下,線段PB上不存在點(diǎn)M,使得EM⊥平面PCD.
解答 證明:(Ⅰ)∵底面ABCD是菱形,∴AB∥CD,
又∵AB?面PCD,CD?面PCD
∴AB∥面PCD,
又∵A、B、E、F四點(diǎn)共面,且平面ABEF∩平面PCD=EF,
∴AB∥EF.
(Ⅱ)在正方形ABCD中,CD⊥AD,
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴CD⊥平面PAD,又∵AF?平面PAD,∴CD⊥AF,
由(Ⅰ)知AB∥EF,
又∵AB∥CD,∴CD∥EF,
由點(diǎn)E是棱PC的中點(diǎn),∴點(diǎn)F是棱PD中點(diǎn),
在△PAD中,∵PA=AD,∴AF⊥PD,
又∵PD∩CD=D,
∴AF⊥平面PCD.
解:(Ⅲ)在(Ⅱ)的條件下,線段PB上不存在點(diǎn)M,使得EM⊥平面PCD.
理由如下:
若存在符合題意的點(diǎn)M,
∵EM⊥平面PCD,EM?平面PBC,
∴平面PBC⊥平面PCD,
而這與題意相矛盾,
故在(Ⅱ)的條件下,線段PB上不存在點(diǎn)M,使得EM⊥平面PCD.
點(diǎn)評(píng) 本題考查二直線平行的證明,考查線面垂直的證明,考查滿足條件的點(diǎn)是否存在的判斷與證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4a2 | B. | 4b2 | C. | 3a2+b2 | D. | a2+3b2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com