5.已知直線過點(2,3),它在x軸上的截距是在y軸上的截距的2倍,則此直線的方程為3x-2y=0或x+2y-8=0.

分析 當(dāng)直線經(jīng)過原點時,直線方程為:y=$\frac{3}{2}$x.當(dāng)直線不經(jīng)過原點時,設(shè)直線方程為:$\frac{x}{2a}$+$\frac{y}{a}$=1,把點P(2,3)代入解得a即可得出.

解答 解:當(dāng)直線經(jīng)過原點時,直線方程為:y=$\frac{3}{2}$x.
當(dāng)直線不經(jīng)過原點時,設(shè)直線方程為:$\frac{x}{2a}$+$\frac{y}{a}$=1,把點P(2,3)代入$\frac{2}{3a}$+$\frac{3}{a}$=1,
解得a=4.
∴直線方程為x+2y=8.
綜上可得直線方程為:3x-2y=0或x+2y-8=0,
故答案是:3x-2y=0或x+2y-8=0.

點評 本題考查了直線的截距式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$f(x)=\frac{1}{3}{x^3}+a{x^2}-2x$在區(qū)間[-1,+∞)上有極大值和極小值,則實數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…an,共n個數(shù)據(jù),我們規(guī)定所測量物理量的“最佳近似值”a是這樣一個量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最。来艘(guī)定,從a1,a2,…,an推出的a=( 。
A.$\sqrt{{\frac{a_1^2+a_2^2+…+a_n^2}{n}}}$B.$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$
C.$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$D.$\frac{n}{\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知A(1,2,3),B(2,-1,1),點M在線段AB上,且AM:MB=1:2.則M坐標(biāo)為$(\frac{4}{3},1,\frac{7}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在[-10,10]上的偶函數(shù)f(x)在(-∞,0)是單調(diào)遞減,f(2a2+a+1)<f(3a2-2a+1),則a的取值范圍如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知曲線C的方程為:|x|+y2-3y=0,則:
(1)y的取值范圍是[0,3];
(2)曲線C的對稱軸方程是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,△ABC三個內(nèi)角A,B,C的對邊分別為a,b,c,且f(A)=1.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求角A的大。
(Ⅲ)若a=7,b=5,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“x≥1”是“$\frac{2x-1}{x}$≥1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不必要又不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:方程4x2-4(m-2)x+1=0有兩個不相等的負(fù)根;命題q:方程x2+3mx+1=0無實根.若p∨q為真,¬q為真,則實數(shù)m的取值范圍是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

同步練習(xí)冊答案