4.${∫}_{0}^{2}$1dx=2.${∫}_{0}^{2}$($\frac{1}{2}$x+1)dx=3.

分析 分別求出被積函數(shù)的原函數(shù),計(jì)算求值即可.

解答 解:${∫}_{0}^{2}$1dx=x|${\;}_{0}^{2}$=2;${∫}_{0}^{2}$($\frac{1}{2}$x+1)dx=$(\frac{1}{4}{x}^{2}+x){|}_{0}^{2}$=3;
故答案為:2;3;

點(diǎn)評(píng) 本題考查了定積分的計(jì)算;正確求出被積函數(shù)的原函數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,正方形ABCD-A1B1C1D1的棱長(zhǎng)為3,在面對(duì)角線A1D上取點(diǎn)M,在面對(duì)角線C1D上取點(diǎn)N,使得MN∥平面AA1C1C,當(dāng)線段MN長(zhǎng)度取到最小值時(shí),三棱錐A1-MND1的體積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.運(yùn)行如圖所示的程序框圖,輸出的n等于( 。
A.27B.28C.29D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)?shù)列{an}滿足an+an+1=n-1,則該數(shù)列的前2016項(xiàng)和為( 。
A.1008×1009B.1007×1008C.1005×1004D.1006×1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y≥0}\end{array}}\right.$,目標(biāo)函數(shù)t=x-2y的最大值為( 。
A.-4B.4C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|x-a|.
(1)若f(x)<2的解集是(1,5),求a的值;
(2)當(dāng)a=1時(shí),求不等式f(x)≥4-|x-4|的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=t,an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1:Tn是數(shù)列 {$\frac{1}{_{n}•_{n+1}}$} 前n項(xiàng)和,求T2011的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=lnx-2x的單調(diào)遞增區(qū)間是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>0}\\{0,x≤0}\end{array}\right.$,則不等式2-x≥(2x-1)f(x)的解集為(-∞,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案