A. | 相離 | B. | 相切 | C. | 相交 | D. | 隨m的變化而變化 |
分析 根據(jù)方程x2+mx+m2-m=0根的判別式大于0,算出0<m<$\frac{4}{3}$,由根與系數(shù)的關(guān)系算出x1+x2=-m,x1x2=m2-m.再利用直線的斜率公式算出AB的斜率k=-m,利用中點(diǎn)坐標(biāo)公式算出AB的中點(diǎn)為M(-$\frac{1}{2}$m,-$\frac{1}{2}$m2+m),得出直線AB的方程為mx+y+m2-m=0.最后利用點(diǎn)到直線的距離公式,算出已知圓的圓心C到直線AB的距離小于圓C的半徑,可得直線與圓的位置關(guān)系是相交.
解答 解:∵x1、x2是關(guān)于x的方程x2+mx+m2-m=0的兩個(gè)不相等的實(shí)數(shù)根,
∴△=m2-4(m2-m)>0,即0<m<$\frac{4}{3}$,且x1+x2=-m,x1x2=m2-m,
可得x12+x22=(x1+x2)2-2x1x2=-m2+2m,
因此,直線AB的斜率k=x1+x2=-m,
AB的中點(diǎn)為M($\frac{1}{2}$(x1+x2),$\frac{1}{2}$(x12+x22)),即M(-$\frac{1}{2}$m,-$\frac{1}{2}$m2+m)
∴直線AB的方程為y-(-$\frac{1}{2}$m2+m)=-m(x+$\frac{1}{2}$m),化簡(jiǎn)得mx+y+m2-m=0
又∵圓(x-1)2+(y+1)2=1的圓心坐標(biāo)為C(1,-1),半徑r=1,
∴圓心C到直線AB的距離為d=$\frac{|{m}^{2}-1|}{\sqrt{{m}^{2}+1}}$,
∵0<m<$\frac{4}{3}$,可得d=$\frac{|{m}^{2}-1|}{\sqrt{{m}^{2}+1}}$<1,
∴圓心C到直線AB的距離小于圓C的半徑,可得直線與圓的位置關(guān)系是相交.
故選:C.
點(diǎn)評(píng) 本題著重考查了一元二次方程根的判別式、根與系數(shù)的關(guān)系、點(diǎn)到直線的距離公式、圓的標(biāo)準(zhǔn)方程和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4$\sqrt{3}$sin(B+$\frac{π}{3}$) | B. | 6sin(B+$\frac{π}{3}$) | C. | 4$\sqrt{3}$sin(B+$\frac{π}{6}$) | D. | 6sin(B+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{2}$ | B. | 35 | C. | $4\sqrt{3}$ | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com