2.從拇指開始數(shù)到小指,然后折回來接著數(shù),到拇指后再折回去數(shù)(折回去數(shù)時小拇指與拇指都不重復計數(shù)),問第1000根手指是( 。
A.拇指B.食指C.中指D.小指

分析 由已知中數(shù)法,可得對應指頭以8為周期呈周期性變化,進而得到答案.

解答 解:從拇指開始數(shù)到小指,然后折回來接著數(shù),到拇指后再折回去數(shù)(折回去數(shù)時小拇指與拇指都不重復計數(shù)),
則對應指頭以8為周期呈周期性變化,
∵1000÷8=125,
故1000和8對應的手指相同,即為食指,
故選:B.

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.A,B兩地之間隔著一個水塘(如圖所示),現(xiàn)選擇另一點C,測得CA=182m,CB=126m,∠ACB=60°,求A,B兩地之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,則輸入的n=8,則輸出的S=( 。
A.$\frac{5}{14}$B.$\frac{3}{8}$C.$\frac{27}{56}$D.$\frac{55}{56}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若方程x2+(1-k)x-2(k+1)=0的一個根在區(qū)間(2,3)內,則實數(shù)k的取值范圍是(  )
A.(3,4)B.(2,3)C.(1,3)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設數(shù)列{an}是以2為首項,1為公差的等差數(shù)列,{bn}是以1為首項,2為公比的等比數(shù)列,則b${\;}_{{a}_{1}}$+b${\;}_{{a}_{2}}$+b${\;}_{{a}_{3}}$+b${\;}_{{a}_{4}}$=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=3sinωx-$\sqrt{3}$cosωx(ω>0)在區(qū)間(-ω,2ω)內單調遞增,則ω的最大值為( 。
A.$\frac{\sqrt{π}}{3}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{3π}}{3}$D.$\frac{\sqrt{2π}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知$sinα=\frac{{2\sqrt{5}}}{5},tan(α+β)=\frac{1}{7},α∈(\frac{π}{2},π)$,那么tanβ的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.命題p:x2-4mx+1=0有實數(shù)解,命題q:?x0∈R,使得mx02-2x0-1>0成立.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題q為真命題,求實數(shù)m的取值范圍;
(3)若命題p且q為假命題,且命題p或q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在等差數(shù)列{an}中,已知a6=12,a18=36,求通項公式an

查看答案和解析>>

同步練習冊答案