已知函數(shù)f(x)=
32x
3+32x
,求f(
1
101
)+f(
2
101
)+…+f(
100
101
)的值.
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的表達(dá)式得到f(x)+f(1-x)=1,從而得到答案.
解答: 解:∵f(x)+f(1-x)
=
32x
3+32x
+
32-2x
3+32-2x

=
32x
3+32x
+
32-2x•32x-1
(3+32-2x)•32x-1

=
32x
3+32x
+
3
3+32x

=1,
∴f(
1
101
)+f(
100
101
)=f(
2
101
)+f(
99
101
)=…=1,
∴f(
1
101
)+f(
2
101
)+…+f(
100
101
)=50×1=50.
點(diǎn)評:本題考查了函數(shù)求值問題,根據(jù)函數(shù)的表達(dá)式得到f(x)+f(1-x)=1是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若loga
3
4
≥1,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-2y-1=0,直線l1過點(diǎn)(-1,2).
(1)若l1⊥l,求直線l1與l的交點(diǎn)坐標(biāo);
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2ax+3,求f(x)在區(qū)間[1,5]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若任取x1∈D,存在唯一的x2∈D,滿足
f(x1)+f(x2)
2
=C,則稱C為函數(shù)y=f(x)在D上的均值,給出下列五個(gè)函數(shù):①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.則所有滿足在其定義域上的均值為2的函數(shù)的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將某班的60名學(xué)生編號為01,02,…,60,采用系統(tǒng)抽樣方法抽取一個(gè)容量為5的樣本,且隨機(jī)抽得的第1個(gè)號碼為04,則抽取的第5個(gè)號碼為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)f(x)與g(x)相等的一組是(  )
A、f(x)=x-1,g(x)=
x2
x
-1
B、f(x)=x2,g(x)=(
x
4
C、f(x)=log2x2,g(x)=2log2x
D、f(x)=tanx,g(x)=
sinx
cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四組函數(shù)中,f(x)與g(x)是同一函數(shù)的一組是( 。
A、f(x)=|x|,g(x)=
x2
B、f(x)=x,g(x)=(
x
2
C、f(x)=
x2-1
x-1
,g(x)=x+1
D、f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線x2-
y2
b2
=1的左右焦點(diǎn),A是雙曲線在第一象限內(nèi)的點(diǎn),若|AF2|=4且∠F1AF2=60°,延長AF2交雙曲線右支于點(diǎn)B,則△F1AB的面積等于
 

查看答案和解析>>

同步練習(xí)冊答案