5.已知點(diǎn)P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.

分析 (1)根據(jù)古典概型的概率公式進(jìn)行求解即可.
(2)利用幾何概型的概率公式進(jìn)行求解.

解答 解:∵x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},
∴p(x,y)共有30個點(diǎn),
滿足y≥x的有15個點(diǎn),
故滿足y≥x的概率$p=\frac{15}{30}=\frac{1}{2}$.
(2)∵x∈[0,5],y∈[0,4],則p(x,y)在如圖所示的矩形區(qū)域內(nèi),
又y=x的直線與y=4交于(4,4),
則滿足x>y的點(diǎn)p(x,y)在圖中陰影部分內(nèi)(不包括直線y=x),
故 $p=\frac{12}{20}=\frac{3}{5}$.

點(diǎn)評 本題主要考查概率的計(jì)算,涉及古典概型和幾何概型的概率的計(jì)算,利用列舉法以及圖象法是解決這兩種概率的常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格上小正方形的邊長為1,粗線畫出的是某空間幾何體的三視圖,則該幾何體的表面積為( 。
A.12+4$\sqrt{2}$+2$\sqrt{13}$B.12+8$\sqrt{2}$+2$\sqrt{13}$C.12+4$\sqrt{2}$+2$\sqrt{26}$D.12+8$\sqrt{2}$+2$\sqrt{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)A($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),將OA繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)$\frac{π}{2}$至OB,則點(diǎn)B的坐標(biāo)為( 。
A.(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$)B.($\frac{1}{2}$,-$\frac{{\sqrt{3}}}{2}$)C.(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$)D.($\frac{{\sqrt{3}}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$.
(1)求f(x)的最小正周期值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0,$\frac{π}{2}$]上的最值及取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC三個頂點(diǎn)坐標(biāo)分別為:A(1,0),B(1,4),C(3,2),直線l經(jīng)過點(diǎn)(0,4).
(1)求△ABC外接圓⊙M的方程;
(2)若直線l與⊙M相交于P,Q兩點(diǎn),且|PQ|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.閱讀如圖所示的程序框圖,若輸入n=2017,則輸出的S值是( 。
A.$\frac{2016}{4033}$B.$\frac{2017}{4035}$C.$\frac{4032}{4033}$D.$\frac{4034}{4035}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)在復(fù)平面上對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某飲料店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x-2-1012
y54221
甲、乙、丙三位同學(xué)對上述數(shù)據(jù)進(jìn)行研究,分別得到了x與y之間的四個線性回歸方程,其中正確的是( 。
A.$\stackrel{∧}{y}$=-x+2.8B.$\stackrel{∧}{y}$=-x+3C.$\stackrel{∧}{y}$=-1.2x+2.6D.$\stackrel{∧}{y}$=2x+2.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{2-i}{1+2i}$的虛部為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步練習(xí)冊答案