分析 (1)求得f(x)的導數(shù),可得切線的斜率,利用曲線y=f(x)在點(1,f(1))處的切線的斜率大于-1,求出a>0,運用導數(shù)的正負求出f(x)的單調區(qū)間;
(2)由f(x)>0對x∈(0,+∞)恒成立,a>($\frac{lnx}{{x}^{2}}$)max,設h(x)=$\frac{lnx}{{x}^{2}}$(x>0),求出a的范圍,結合f(x)•g(x)>0對x∈(0,+∞)恒成立,得到a<$\frac{{e}^{x}}{x}$對x∈(0,+∞)恒成立.設H(x)=$\frac{{e}^{x}}{x}$,求出a的范圍,取交集即可.
解答 解:(1)函數(shù)f(x)的定義域為(0,+∞)
∵f(x)=ax2-lnx,
∴f′(x)=2ax-$\frac{1}{x}$,
∵曲線y=f(x)在點(1,f(1))處的切線的斜率大于-1,
∴f'(1)=2a-1>-1,
∴a>0.
令f′(x)>0,x>$\sqrt{\frac{1}{2a}}$,f′(x)<0,0<x<$\sqrt{\frac{1}{2a}}$,
∴f(x)的單調遞增區(qū)間是($\sqrt{\frac{1}{2a}}$,+∞);單調遞減區(qū)間是(0,$\sqrt{\frac{1}{2a}}$);
(2)若f(x)>0對x∈(0,+∞)恒成立,
即ax2-lnx>0對x∈(0,+∞)恒成立,則a>($\frac{lnx}{{x}^{2}}$)max,
設h(x)=$\frac{lnx}{{x}^{2}}$(x>0),
則h′(x)=$\frac{1-2lnx}{{x}^{3}}$,
當0<x<${e}^{\frac{1}{2}}$時,h'(x)>0,函數(shù)h(x)遞增;
當x>${e}^{\frac{1}{2}}$時,h'(x)<0,函數(shù)h(x)遞減.
所以當x>0時,h(x)max=h(${e}^{\frac{1}{2}}$)=$\frac{1}{2e}$,
∴a>$\frac{1}{2e}$.
∵h(x)無最小值,
∴f(x)<0對x∈(0,+∞)恒成立不可能.
∵f(x)•g(x)>0對x∈(0,+∞)恒成立,
∴g(x)=ex-ax>0,即a<$\frac{{e}^{x}}{x}$對x∈(0,+∞)恒成立.
設H(x)=$\frac{{e}^{x}}{x}$,
∴H′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
當0<x<1時,H'(x)<0,函數(shù)H(x)遞減;
當x>1時,H'(x)>0,函數(shù)H(x)遞增,
所以當x>0時,H(x)min=H(1)=e,
∴a<e.
綜上可得,$\frac{1}{2e}$<a<e.
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,考查分類討論思想,是一道綜合題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,+∞) | B. | [-1,$\frac{1}{2}$] | C. | (-∞,-1]∪[$\frac{1}{2}$,+∞) | D. | [-$\frac{1}{3}$,-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年收入x/萬元 | 2 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 8 | 10 |
年支出y/萬元 | 0.9 | 1.4 | 1.6 | 2.0 | 2.1 | 1.9 | 1.8 | 2.1 | 2.2 | 2.3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com