精英家教網 > 高中數學 > 題目詳情
3.某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如表資料:
    日期11月1日11月2日11月3日11月4日11月5日
溫差x(℃)    8   11  12   13   10
發(fā)芽數y(顆)   16   25  26   30   23
設農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是11月1日與11月5日的兩組數據,請根據11月2日至11月4日的數據,求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

分析 (1)根據題意列舉出從5組數據中選取2組數據共有10種情況,每種情況都是可能出現的,滿足條件的事件包括的基本事件有4種.根據等可能事件的概率做出結果.
(2)根據所給的數據,先做出x,y的平均數,即做出本組數據的樣本中心點,根據最小二乘法求出線性回歸方程的系數,寫出線性回歸方程.
(3)根據估計數據與所選出的檢驗數據的誤差均不超過2顆,就認為得到的線性回歸方程是可靠的,根據求得的結果和所給的數據進行比較,得到所求的方程是可靠的.

解答 解:(1)設抽到不相鄰兩組數據為事件A,因為從5組數據中選取組數據共有10種情況,每種情況都是等可能出現的,其中抽到相鄰兩組數據的情況有4種,
所以P(A)=1-0.4=0.6.
故選取的組數據恰好是不相鄰天數據的概率是0.6;
(2)由數據,求得$\overline{x}$=$\frac{1}{3}$(11+13+12)=12,$\overline{y}$=$\frac{1}{3}$(25+30+26)=27,
由公式求得$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{977-972}{434-432}$=$\frac{5}{2}$,$\hat a=\overline y-\hat b\overline x$=-3.
所以關于x的線性回歸方程為y=$\frac{5}{2}$x-3.
(3)當x=10時,y=$\frac{5}{2}$x-3=22,|22-23|<2,
同樣,當x=8時,y=$\frac{5}{2}$x-3=17,|17-16|<2.
所以,該研究所得到的線性回歸方程是可靠的.

點評 本題考查等可能事件的概率,考查線性回歸方程的求法,考查最小二乘法,考查估計驗算所求的方程是否是可靠的,是一個綜合題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

13.討論函數f(x)=$\left\{\begin{array}{l}{{x}^{2},x<2}\\{2,x=2}\\{1,x>2}\end{array}\right.$,當x→2時是否存在極限.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.復數z滿足zi-1=i,則$\overline z$為( 。
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知a>1,b>2,且$\frac{1}{a-1}+\frac{1}{b-2}$=3,則a+4b的最小值為( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.體育課的排球發(fā)球項目考試的規(guī)則是每位學生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設學生一次發(fā)球成功的概率為p(p≠0),發(fā)球次數為X,若X的數學期望E(X)>1.75,則p的取值范圍(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.某重點大學自主招生考試過程依次為自薦材料審查、筆試、面試共三輪考核.規(guī)定:只能通過前一輪考核才能進入下一輪的考核,否則將被淘汰;三輪考核都通過才算通過該高校的自主招生考試.學生甲三輪考試通過的概率分別為$\frac{2}{3}$,$\frac{3}{4}$,$\frac{4}{5}$,且各輪考核通過與否相互獨立.
(1)求甲通過該高校自主招生考試的概率;
(2)若學生甲每通過一輪考核,則家長獎勵人民幣1000元作為大學學習的教育基金.記學生甲得到教育基金的金額為X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=2cos$\frac{ωx}{2}$sin($\frac{ωx}{2}$+$\frac{π}{6}$)-$\frac{1}{2}$(ω>0)的圖象相鄰兩條對稱軸的距離為$\frac{π}{2}$
(1)求函數f(x)的解析式及其單調增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,若f($\frac{A}{2}$)-cosA=$\frac{1}{2}$,且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知等比數列{an}滿足a2+a3=$\frac{4}{3}$,a1a4=$\frac{1}{3}$,公比q<1.
(1)求數列{an}的通項公式與前n項和;
(2)設bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,數列{bnbn+2}的前n項和為Tn,若對于任意的正整數,都有Tn<m2-m+$\frac{3}{4}$成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知函數f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}$,則f(f(-1))=( 。
A.4B.2C.1D.-2

查看答案和解析>>

同步練習冊答案