2.若角α的終邊經(jīng)過點P(-8,-6),則sinα=$-\frac{3}{5}$.

分析 由坐標系中兩點之間的距離公式,可得|OP|=10,結合三角函數(shù)的定義即可算出sinα的值.

解答 解:∵點P(-8,-6),
∴x=-8,y=-6,|OP|=$\sqrt{(-6)^{2}+(-8)^{2}}$=10,
因此,sinα=$\frac{y}{|OP|}$=$\frac{-6}{10}$=-$\frac{3}{5}$.
故答案為:-$\frac{3}{5}$.

點評 本題給出角α的終邊經(jīng)過點P(-8,-6),求α角的正弦之值,著重考查了任意角三角函數(shù)定義的知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.設f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=2msin2x-(2$\sqrt{3}$)msinx•cosx+n(m>0)的定義域為[0,$\frac{π}{2}$],值域為[-5,4],試求函數(shù)g(x)=msin(x+10°)+2ncos(x+40°)(x∈R)的最小正周期T和最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知($\sqrt{2}$+1)m=$\sqrt{2}$xm+ym,其中m,xm,ym∈N*
(1)求證:ym為奇數(shù);
(2)定義:[x]表示不超過實數(shù)x的最大整數(shù).已知數(shù)列{an}的通項公式為an=[$\sqrt{2}$n],求證:存在{an}的無窮子數(shù)列{bn},使得對任意的正整數(shù)n,均有bn除以4的余數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合M={(x,y)|y=x+1},N={(x,y)|y=x2-x-2},求M∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{π}{4}$,cosB=$\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若c=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在平面直角坐標系中,銳角α,β的終邊分別與單位圓交于A,B兩點.
(1)如果點A的縱坐標為$\frac{3}{5}$,點B的橫坐標為$\frac{5}{13}$,求cos(α-β);
(2)已知點C(2$\sqrt{3}$,-2),$\overrightarrow{OA}•\overrightarrow{OC}$=2,求α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=5,b=7,B=$\frac{π}{3}$,則S△ABC=10$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在等差數(shù)列{an}中,若a3和a8是方程x2-6x+5=0的兩根,則a5+a6的值是6.

查看答案和解析>>

同步練習冊答案