【題目】已知函數(shù)

1)若關(guān)于x的方程僅有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

2)若是函數(shù)的極大值點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)

【解析】

(1)僅有1個(gè)實(shí)數(shù)根可考慮利用參變分離得,再分析函數(shù)的單調(diào)性與極值最值,畫出圖像分析何時(shí)僅有一根即可.
(2)表達(dá)出的函數(shù)式,求導(dǎo)后再根據(jù)極值點(diǎn)的大小關(guān)系分的不同類進(jìn)行討論即可.

1)依題意,,顯然不是方程的根,故,令,則,

故函數(shù)上單調(diào)遞增,且當(dāng)時(shí),,當(dāng)x從負(fù)方向趨于0時(shí)以及時(shí),,當(dāng)x從正方向趨于0時(shí),,

作出函數(shù)的圖象如圖所示,觀察可知,,即實(shí)數(shù)的取值范圍為

2,則

①若,則當(dāng)時(shí),,,,所以;

當(dāng)時(shí),,,所以.所以處取得極大值.

②若,則當(dāng)時(shí),,,所以.所以不是的極大值點(diǎn).

綜上所述,實(shí)數(shù)a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)處的切線方程;

2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);

3)若函數(shù)的極大值等于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合,集合

1)用列舉法表示集合C;

2)設(shè)集合C的含n個(gè)元素所有子集為,記有限集合M的所有元素和為,求的值;

3)已知集合PQ是集合C的兩個(gè)不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合對(duì)的個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為80萬(wàn)元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰4萬(wàn)元,以后每月增加2萬(wàn)元.如果從今年一月起投資500萬(wàn)元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面可以大大降低原料成本,據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前4個(gè)月中的累計(jì)生產(chǎn)凈收入g(n)是生產(chǎn)時(shí)間個(gè)月的二次函數(shù)是常數(shù),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬(wàn)元,從第5個(gè)月開(kāi)始,每個(gè)月的生產(chǎn)凈收入都與第4個(gè)月相同,同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎(jiǎng)勵(lì)120萬(wàn)元.

(1)求前6個(gè)月的累計(jì)生產(chǎn)凈收入g(6)的值;

(2)問(wèn)經(jīng)過(guò)多少個(gè)月,投資開(kāi)始見(jiàn)效,即投資改造后的純收入多于不改造的純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面為正方形的四棱錐中,平面,為棱上一動(dòng)點(diǎn),.

1)當(dāng)中點(diǎn)時(shí),求證:平面

2)當(dāng)平面時(shí),求的值;

3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、是三條不同的直線,、是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,,,,則

②若,,則;

③若是兩條異面直線,,,則

④若,,,則.

其中正確命題的序號(hào)是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 經(jīng)過(guò)橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.

(1)求橢圓的方程;

(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和直線,直線過(guò)直線上的動(dòng)點(diǎn)且與直線垂直,線段的垂直平分線與直線相交于點(diǎn)

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線與軌跡相交于另一點(diǎn),與直線相交于點(diǎn),求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案