8.若a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$\frac{sinA}{a}$=$\frac{cosB}$,則角B=$\frac{π}{4}$.

分析 直接利用正弦定理以及特殊角的三角函數(shù),化簡求解即可.

解答 解:a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$\frac{sinA}{a}$=$\frac{cosB}$,
可得$\frac{sinA}{sinA}=\frac{cosB}{sinB}$,可得sinB=cosB,
所以B=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,三角形的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x+a|,a∈R.
(Ⅰ)當(dāng)a=-1時(shí),求不等式f(x)+|x+1|-3≤0的解集;
(Ⅱ)若對(duì)?x∈[1,2],f(x)<x2+1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1+{3}^{x}}{1-{3}^{x}}$.
(Ⅰ)求函數(shù)f(x)的定義域和值域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.四棱錐S-ABCD的底面是邊長為2的正方形,頂點(diǎn)S在底面的射影是底面正方形的中心O,SO=2,E是邊BC的中點(diǎn),動(dòng)點(diǎn)P在表面上運(yùn)動(dòng),并且總保持PE⊥AC,則動(dòng)點(diǎn)P的軌跡的周長為$\sqrt{2}+\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=tan(2x+$\frac{π}{3}$),則f(x)的定義域?yàn)閧x|x≠$\frac{π}{12}+\frac{kπ}{2},k∈Z$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.與直線2x+y+1=0垂直,且交點(diǎn)在y軸上的直線方程為x-2y-2=0(要求寫一般式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.△ABC的三個(gè)內(nèi)角A,B,C所對(duì)邊的長分別為a,b,c,設(shè)向量$\overrightarrow{p}$=(a+c,b),$\overrightarrow{q}$=(b,c-a).若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)A,F(xiàn)分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)和右焦點(diǎn),過點(diǎn)F的直線l與雙曲線C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點(diǎn),若$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-a2,則雙曲線C的離心率為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)的定義域?yàn)椋?,+∞)的增函數(shù),且f(xy)=f(x)+f(y),f(2)=1,則滿足f(x)+f(x-3)≤2的x的取值范圍是(3,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案