7.等腰三角形的腰長為4,底邊長為5,求頂角的余弦值.

分析 利用直角三角形中的邊角關(guān)系求得頂角的一半的余弦值,再利用二倍角的余弦公式求得頂角的余弦值.

解答 解:設(shè)頂角為2θ,則由題意可得sinθ=$\frac{\frac{5}{2}}{4}$=$\frac{5}{8}$,∴cos2θ=1-2sin2θ=$\frac{7}{32}$,
即頂角的余弦值為 $\frac{7}{32}$.

點(diǎn)評 本題主要考查直角三角形中的邊角關(guān)系,二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若點(diǎn)(3,$\sqrt{3}$)到直線x+my-4=0的距離等于1,則m的值為0或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在(1+x)5的展開式中,x2的系數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,正方形ABCD的邊長為1,延長BA至E,使AE=1,連接EC、ED,則sin∠CED-cos∠CED=( 。
A.-$\frac{\sqrt{10}}{5}$B.$\frac{\sqrt{10}}{10}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=f(x)-3|x|為奇函數(shù),且f(-2)=9,若g(x)=f(x)+1,則g(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2,且a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$,求T2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一點(diǎn).
(1)求證:BD⊥平面SAC;
(2)設(shè)SA=4,AB=2,求點(diǎn)A到平面SBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=asin2x+tanx+1,且f(-3)=5.則f(π+3)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}滿足:a2+a4=6,a6=S3,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若k∈N*,{bn}為等比數(shù)列且b1=ak,b2=a3k,b3=S2k,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案