6.空間三條不同直線l,m,n和三個(gè)不同平面α,β,γ,給出下列命題:
①若m⊥l且n⊥l,則m∥n;
②若m∥l且n∥l,則m∥n;
③若m∥α且n∥α,則m∥n;
④若m⊥α,n⊥α,則m∥n;
⑤若α⊥γ,β⊥γ,則α∥β;
⑥若α∥γ,β∥γ,則α∥β;
⑦若α⊥l,β⊥l,則α∥β.
其中正確的個(gè)數(shù)為( 。
A.6B.5C.4D.3

分析 利用空間直線與直線,線面平行和面面平行的判定定理和性質(zhì)定理分別分析解答.

解答 解:①若m⊥l且n⊥l,則m與n可能平行、相交或者異面;故①錯(cuò)誤;
②若m∥l且n∥l,根據(jù)平行公理得到m∥n;②正確;
③若m∥α且n∥α,則m∥n或者相交或者異面;故③錯(cuò)誤;
④若m⊥α,n⊥α,根據(jù)線面垂直的性質(zhì)定理得到m∥n;故④正確;
⑤若α⊥γ,β⊥γ,則α∥β或者相交;故⑤錯(cuò)誤;
⑥若α∥γ,β∥γ,則α∥β;正確
⑦若α⊥l,β⊥l,根據(jù)線面垂直的性質(zhì)定理和面面平行的判定定理得到α∥β.故⑦正確;
所以正確的有四個(gè);
故選C.

點(diǎn)評 本題考查了空間直線與直線,線面關(guān)系和面面關(guān)系的判定;熟練掌握相關(guān)的定理是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1+lnx}{x}$,若對任意的x1,x2∈[e2,+∞),有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|>$\frac{k}{{x}_{1}•{x}_{2}}$,則實(shí)數(shù)k的取值范圍為( 。
A.(-∞,2]B.(-∞,1)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.點(diǎn)P(0,1)到直線l:3x-4y+1=0的距離為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=Asin(ωx+φ)(A>0,-π<ω<0,φ>0)在一個(gè)周期的區(qū)間上的圖象如圖,則f(x)的解析式為$\sqrt{5}$sin(-$\frac{π}{8}$x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.五人站成一排,其中甲、乙之間有且僅有1人,不同排法的總數(shù)是( 。
A.48B.36C.18D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,ak-4=191,Sk=10000,則k的值為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.冪函數(shù)f(x)=xα(α∈R)過點(diǎn)(2,$\sqrt{2}$),則f(16)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是某青年歌手大獎(jiǎng)賽上甲、乙兩選手得分的莖葉圖,(其中m為0~9中的一個(gè)數(shù)字),去掉一個(gè)最高分和一個(gè)最低分后,甲、乙兩名選手得分的平均數(shù)分別為x、y則一定有(  )
A.x<yB.x>y
C.x=yD.xy的大小與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+1≥0}\\{|y|≤2}\end{array}\right.$,則z=x+y的最大值與最小值分別為( 。
A.6,-3B.1,-3C.6,-2D.1,-2

查看答案和解析>>

同步練習(xí)冊答案