4.設(shè)向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,2),若(2$\overrightarrow a$+$\overrightarrow b$)∥($\frac{1}{2}$$\overrightarrow a$+k$\overrightarrow b$),則實數(shù)k的值為$\frac{1}{4}$.

分析 利用向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理即可得出.

解答 解:2$\overrightarrow a$+$\overrightarrow b$=(5,4),$\frac{1}{2}$$\overrightarrow a$+k$\overrightarrow b$=$(1+k,\frac{1}{2}+2k)$,
∵(2$\overrightarrow a$+$\overrightarrow b$)∥($\frac{1}{2}$$\overrightarrow a$+k$\overrightarrow b$),
∴4(1+k)-5×($\frac{1}{2}$+2k)=0,解得k=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在區(qū)間[0,2]上任取兩個實數(shù)a,b,則函數(shù)f(x)=x2+ax-$\frac{1}{4}$b2+1在R上沒有零點的概率是(  )
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈R|x2+x-2<0},B={x|${\frac{x-2}{x+1}$≤0},則A∩B=( 。
A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={-2,-1,0,1,2,3},B={y|y=|x|-3,x∈A},則A∩B=( 。
A.{-2,1,0}B.{-1,0,1,2}C.{-2,-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若一個等腰三角形采用斜二測畫法作出其直觀圖,其直觀圖面積是原三角形面積的(  )
A.$\frac{1}{2}$倍B.2倍C.$\frac{\sqrt{2}}{4}$倍D.$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ax+xeb-x(其中a,b為常數(shù)),函數(shù)y=f(x)在點(2,2e+2)處的切線的斜率為e-1.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}-x+2,x≤0\\ x+2,x>0\end{array}$,則不等式f(x)≥x2的解集為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(文科)求圓x2+y2=1上的點到直線l:x-2y-12=0的最大距離和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.y=$\sqrt{lo{g}_{0.5}(4x-3)}$的定義域(  )
A.($\frac{3}{4}$,1]B.[$\frac{3}{4}$,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案