9.函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(5x-2)}$的定義域是( 。
A.[$\frac{3}{5}$,+∞)B.($\frac{2}{5}$,+∞)C.[$\frac{2}{5}$,$\frac{3}{5}$]D.($\frac{2}{5}$,$\frac{3}{5}$]

分析 根據(jù)二次根式的性質(zhì)與對數(shù)函數(shù)的圖象與性質(zhì),列出不等式求出解集即可.

解答 解:函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(5x-2)}$,
∴${log}_{\frac{1}{2}}$(5x-2)≥0,
即0<5x-2≤1,
解得2<5x≤3,
即$\frac{2}{5}$<x≤$\frac{3}{5}$;
∴函數(shù)y的定義域是($\frac{2}{5}$,$\frac{3}{5}$].
故選:D.

點評 本題考查了二次根式與對數(shù)函數(shù)的性質(zhì)和應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.等腰△ABC中,AC=BC=$\sqrt{5}$,AB=2,E、F分別為AC、BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P-ABFE,且AP=BP=$\sqrt{3}$.
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B-AP-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫下面的表格:
 性質(zhì)定義域 值域 單調(diào)性 奇偶性 零點 
 f(x)     
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知sinα和cosα是方程x2-kx+k+1=0的兩根,且π<α<2π,則α+k=$\frac{3π}{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)集合A={(x,y)|y≥|x-l|},B={(x,y)|x-2y+2≥0),C={(x,y)|ax-y+a≥0},若(A∩B)⊆C,則實數(shù)a的最小值為( 。
A.-2B.一1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點P(-4,3)在角α終邊上.
(Ⅰ)求sinα、cosα和tanα的值;
(Ⅱ)求$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).
(1)若函數(shù)y=f(x)在點(1,f(1))處的切線與直線x-2y+3=0垂直,求實數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.數(shù)列{an}的通項公式是an=(-1)n(3n-2),則該數(shù)列的前100項之和為(  )
A.-200B.-150C.200D.150

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.$x=\frac{a_1}{3}+\frac{a_2}{3^2}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,其中a1,a2,…,a100每一個值都是0或2這兩個值中的某一個,則x一定不屬于(  )
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

同步練習冊答案